Volume 32, Issue 2 (Summer 2025)                   J Birjand Univ Med Sci. 2025, 32(2): 98-110 | Back to browse issues page

Research code: 457368
Ethics code: IR.BUMS.REC.1402.553


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasiri M, Anani Sarab G, Sayadi M, Shakibaie M. Effects of curcumin-loaded amine-functionalized mesoporous silica nanoparticles on apoptosis induction and cell cycle arrest in RPMI-8226 multiple myeloma cell line. J Birjand Univ Med Sci. 2025; 32 (2) :98-110
URL: http://journal.bums.ac.ir/article-1-3536-en.html
1- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
2- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
3- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran & Pharmaceutical Sciences Research Center, Birjand University of Medical Sciences, Birjand, Iran , m.shakibaie@bums.ac.ir
Abstract:   (386 Views)
Background and Aims: Multiple Myeloma (MM) is an incurable hematologic malignancy characterized by the dysregulation of apoptosis and cell cycle processes. The pressent study aimed to investigate the effects of curcumin-loaded amine-functionalized mesoporous silica nanoparticles (MSNs-NH₂-Cur) on apoptosis induction and cell cycle phase alterations in RPMI-8226 multiple myeloma cell.
Materials and Methods: In this experimental study, MSNs were synthesized using modified Stöber method and subsequently functionalized with amine groups. The synthesized nanoparticles were characterized using Transmission electron microscopy (TEM) images and Dynamic Light Scattering (DLS) analysis. MSNs-NH2 were then loaded with curcumin, and the percentages of encapsulation efficiency and loading efficiency were measured. RPMI-8226 cells were cultured in RPMI-1640 media and their viability was assessed after 24- and 48-hour treatments with various concentrations of MSNs-NH₂-Cur using the MTT assay. Following 24-hour treatment of RPMI-8226 cells with IC50 concentration, cell cycle distribution was examined through Propidium iodide staining, and apoptosis was evaluated using the Annexin V-PI kit via flow cytometry.
Results: TEM images and DLS analysis demonstrated the morphology and uniform size distribution of the nanoparticles. The loading efficiency was relatively satisfactory; moreover, a slow and sustained release of curcumin from MSN-NH2 was observed. MSNs-NH₂-Cur reduced the viability of RPMI-8226 cells in a concentration- and time-dependent manner (P˂ 0.001). Flow cytometric analysis clearly  illustrated cell cycle arrest in the G0/G1 phase (32.276% to 46.233%) (P˂ 0.01) and induction of apoptosis.
Conclusion: As evidenced by the obtained results, MSNs-NH₂-Cur significantly decreased cell viability in a concentration- and time-dependent manner, somewhat induced apoptosis, and caused cell cycle arrest.
Full-Text [PDF 880 kb]   (141 Downloads)    
Type of Study: Original Article | Subject: Nanotechnology
Received: 2025/06/25 | Accepted: 2025/07/28 | ePublished ahead of print: 2025/08/25 | ePublished: 2025/07/1

References
1. Dadzie TG, Green AC. The role of the bone microenvironment in regulating myeloma residual disease and treatment. Front Oncol. 2022; 12:999939. DOI: 10.3389/fonc.2022.999939 [DOI:10.3389/fonc.2022.999939] [PMID] []
2. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025; 75(1): 10-45. DOI: 10.3322/caac.21871 [DOI:10.3322/caac.21871] [PMID] []
3. Nahvijou A. Disability-Adjusted Life Years (DALY) for Cancers in Iran, 1990 to 2016: Review of Findings from the Global Burden of Disease Study. Iran J Public Health. 2021; 50(10):2095-104. DOI: 10.18502/ijph.v50i10.7511 [DOI:10.18502/ijph.v50i10.7511] [PMID] []
4. Michels TC, Petersen KE. Multiple Myeloma: Diagnosis and Treatment. Am Fam Physician. 2017; 95(6): 373-83. URL: https://pubmed.ncbi.nlm.nih.gov/28318212/
5. Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, et al. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules. 2024; 29(11): 2584. DOI: 10.3390/molecules29112584 [DOI:10.3390/molecules29112584] [PMID] []
6. Alvarez-Berríos MP, Sosa-Cintron N, Rodriguez-Lugo M, Juneja R, Vivero-Escoto JL. Hybrid Nanomaterials Based on Iron Oxide Nanoparticles and Mesoporous Silica Nanoparticles: Overcoming Challenges in Current Cancer Treatments. J Chem. 2016; 2016: 2672740. DOI: [DOI:10.1155/2016/2672740]
7. Hesari A, Azizian M, Sheikhi A, Nesaei A, Sanaei S, Mahinparvar N, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer. 2019; 144(6): 1215-26. DOI: 10.1002/ijc.31947 [DOI:10.1002/ijc.31947] [PMID]
8. Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract. 2019; 215(10): 152556. DOI: 10.1016/j.prp.2019.152556 [DOI:10.1016/j.prp.2019.152556] [PMID]
9. Allegra A, Speciale A, Molonia MS, Guglielmo L, Musolino C, Ferlazzo G, et al. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol In Vitro. 2018; 47: 186-94. DOI: 10.1016/j.tiv.2017.12.001 [DOI:10.1016/j.tiv.2017.12.001] [PMID]
10. Sharifi S, Dalir Abdolahinia E, Ghavimi MA, Dizaj SM, Aschner M, Saso L, et al. Effect of Curcumin-Loaded Mesoporous Silica Nanoparticles on the Head and Neck Cancer Cell Line, HN5. Curr Issues Mol Biol. 2022; 44(11): 5247-59. DOI: 10.3390/cimb44110357 [DOI:10.3390/cimb44110357] [PMID] []
11. Mirzaei H, Bagheri H, Ghasemi F, Khoi JM, Pourhanifeh MH, Heyden YV, et al. Anti-Cancer Activity of Curcumin on Multiple Myeloma. Anticancer Agents Med Chem. 2021; 21(5): 575-86. DOI: 10.2174/1871520620666200918113625 [DOI:10.2174/1871520620666200918113625] [PMID]
12. Pedraza D, Díez J, Isabel-Izquierdo-Barba, Colilla M, Vallet-Regí M. Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment. Biomedical Glasses. 2018; 4(1): 1-12. DOI: 10.1515/bglass-2018-0001 [DOI:10.1515/bglass-2018-0001]
13. Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006; 1(3): 1458-61. DOI: 10.1038/nprot.2006.238 [DOI:10.1038/nprot.2006.238] [PMID]
14. Lv Y, Li J, Chen H, Bai Y, Zhang L. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier. Int J Nanomedicine. 2017; 12: 4361-70. DOI: 10.2147/IJN.S135626 [DOI:10.2147/IJN.S135626] [PMID] []
15. Chng WJ, Bergsagel PL. The molecular biology of multiple myeloma. Molecular Hematology. London: Wiley-Blackwell; 2019. p. 121-30. DOI: [DOI:10.1002/9781119252863.ch10]
16. Yang G, Liu Y, Wang H, Wilson R, Hui Y, Yu L, et al. Bioinspired Core-Shell Nanoparticles for Hydrophobic Drug Delivery. Angew Chem Int Ed Engl. 2019; 58(40): 14357-64. DOI: 10.1002/anie.201908357 [DOI:10.1002/anie.201908357] [PMID]
17. Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, et al. Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS Appl Mater Interfaces. 2015; 7(22): 11695-712. DOI: 10.1021/acsami.5b01993 [DOI:10.1021/acsami.5b01993] [PMID]
18. Liu C, Jiang F, Xing Z, Fan L, Li Y, Wang S, et al. Efficient Delivery of Curcumin by Alginate Oligosaccharide Coated Aminated Mesoporous Silica Nanoparticles and In Vitro Anticancer Activity against Colon Cancer Cells. Pharmaceutics. 2022; 14(6): 1166. DOI: 10.3390/pharmaceutics14061166 [DOI:10.3390/pharmaceutics14061166] [PMID] []
19. Mohebian Z, Babazadeh M, Zarghami N. In Vitro Efficacy of Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles against MCF-7 Breast Cancer Cells. Adv Pharm Bull. 2023; 13(2): 317-27. DOI: 10.34172/apb.2023.035 [DOI:10.34172/apb.2023.035] [PMID] []
20. Bai Q, Liu Q. Antitumor Effects and Mechanisms of Curcumin On Human Multiple Myeloma Cell Lines. Blood. 2009; 114(22): 4896. DOI: [DOI:10.1182/blood.V114.22.4896.4896]
21. Sung B, Kunnumakkara AB, Sethi G, Anand P, Guha S, Aggarwal BB. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol Cancer Ther. 2009; 8(4): 959-70. DOI: 10.1158/1535-7163.MCT-08-0905 [DOI:10.1158/1535-7163.MCT-08-0905] [PMID] []
22. Zhang XY, Bai QX, Huang GS, Zhao H, Chen JJ, Yang LJ. [Effect of curcumin in combination with bortezomib on proliferation and apoptosis of human multiple myeloma cell line H929 and its mechanism]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2011; 19(3): 684-8. [Article in Chinese] URL: https://pubmed.ncbi.nlm.nih.gov/21729550/

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb