Volume 31, Issue 1 (May 2024)                   JBUMS 2024, 31(1): 68-78 | Back to browse issues page

Research code: IR.BIRJAND.REC.۱۴۰۲.۰۷.۲۵
Ethics code: IR.BIRJAND.REC.1402.003


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roygari F, Gholasimod S, Ghaleh Golab Behbahan N. Effect of hydroalcoholic extract of Berberis vulgaris L. fruit on the amount of angiogenesis in the chorioallantoic membrane of chicken embryos. JBUMS 2024; 31 (1) :68-78
URL: http://journal.bums.ac.ir/article-1-3374-en.html
1- Master’s Student in Biotechnology, Faculty of Natural Sciences and Environment, University of Birjand, Birjand, Iran , fereshteh.rooigar@gmail.com
2- Department of Watershed and Pasture Management, Faculty of Natural Sciences and Environment, University of Birjand, Birjand, Iran
3- Razi Vaccine and Serum Production, Shiraz, Iran
Abstract:   (241 Views)
Background and Aims: Cancer, which is characterized by irregular cell metabolism and the development of metastasis risk, is still a significant risk and life-threatening. Although there are several unique advantages for cancer treatment, some problems, such as poor drug targeting efficacy, increased tumor hypoxia, severe coronary syndromes, excessive ventricular conduction, and drug-induced drug resistance, have emerged in recent years. Chemotherapy and increased risk of tumor metastasis have limited their potential clinical use.
Materials and Methods: In this experimental study, a total of 36 embryonic eggs were randomly selected. Then, four treatments, including control, 40, 80, and 120 µg/ml hydroalcoholic extract of Berberis vulgaris (B. vulgaris) fruit, and nine replications were tested. On the third day of incubation, the eggs were exposed to an open window, and on the eighth day, the experimental groups were treated with 40, 80, and 120 µg/ml alcoholic extract of B. vulgaris fruit, which was collected from Qaen city in South Khorasan Province, Iran. On the 12th day, the chorioallantoic membrane of all samples was photographed using a photo stereomicroscope, the numbers/diameters of vascular branches were measured using the Image J software (1.46r), and the resulting data were analyzed using the SPSS software (version 22) and the least significant difference (LSD) test (P≤0.01)
Results: The mean number of vessels in the experimental groups was equal to (6.23+0.81) and (22.89+0.81), which indicated a significant dose-dependent reduction compared to the mean number of vessels measured in the control group (15.73+0.29) and (53.87+2.07) (P=0.003).
Conclusion: The use of the hydroalcoholic extract of B. vulgaris in three doses of 40, 80, and 120 µg/ml can reduce the number of branches and the diameter of vessels in the chorioallantoic membrane of chicken embryos, which indicates the process of angiogenesis inhibition.
Full-Text [PDF 760 kb]   (114 Downloads)    
Type of Study: Original Article | Subject: Medicinal plants
Received: 2024/01/9 | Accepted: 2024/05/9 | ePublished ahead of print: 2024/05/29 | ePublished: 2024/06/4

References
1. Herrera-Vargas AK, Garcia-Rodriguez E, Olea-Flores M, Mendoza-Catalan MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev. 2021; 62: 23-41. DOI: 10.1016/j.cytogfr.2021.10.006 [DOI:10.1016/j.cytogfr.2021.10.006] [PMID]
2. Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer. 2020; 11(15): 4474-94. DOI: 10.7150/jca.44313 [DOI:10.7150/jca.44313] [PMID] []
3. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020; 77(9): 1745-70. DOI: 10.1007/s00018-019-03351-7 [DOI:10.1007/s00018-019-03351-7] [PMID] []
4. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020; 39(1): 1-19. DOI: 10.1186/s13046-020-01709-5 [DOI:10.1186/s13046-020-01709-5] [PMID] []
5. Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, et al. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019; 234(5): 5700-21. [Persian] DOI: 10.1002/jcp.27425 [DOI:10.1002/jcp.27425] [PMID]
6. Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother. 2023; 161: 114491. DOI: 10.1016/j.biopha.2023.114491 [DOI:10.1016/j.biopha.2023.114491] [PMID]
7. Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers. 2020 [DOI:10.3390/cancers12071765] [PMID] []
8. 12(7): 1765. DOI: 10.3390/cancers12071765 [DOI:10.3390/cancers12071765] [PMID] []
9. Lv F, Li X, Wang Y, Hao L. MAGP1 maintains tumorigenicity and angiogenesis of laryngeal cancer by activating Wnt/β-catenin/MMP7 pathway. Carcinogenesis. 2024; 45(4):220-34. DOI: 10.1093/carcin/bgad003 [DOI:10.1093/carcin/bgad003] [PMID]
10. Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models. Int J Mol Sci. 2020; 21(4): 1388. DOI: 10.3390/ijms21041388 [DOI:10.3390/ijms21041388] [PMID] []
11. Yao C, Wu S, Kong J, Sun Y, Bai Y, Zhu R, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med. 2023; 20(1): 25-43. DOI: 10.20892/j.issn.2095-3941.2022.0449 [DOI:10.20892/j.issn.2095-3941.2022.0449] [PMID] []
12. Qi S, Deng S, Lian Z, Yu K. Novel drugs with high efficacy against tumor angiogenesis. Int J Mol Sci. 2022; 23(13): 6934. DOI: 10.3390/ijms23136934 [DOI:10.3390/ijms23136934] [PMID] []
13. Li H-X, Wang S-Q, Lian Z-X, Deng S-L, Yu K. Relationship between tumor infiltrating immune cells and tumor metastasis and its prognostic value in cancer. Cells. 2022; 12(1): 64. DOI: 10.3390/cells12010064 [DOI:10.3390/cells12010064] [PMID] []
14. Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, et al. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct Target Ther. 2021; 6(1): 94. DOI: 10.1038/s41392-020-00443-w [DOI:10.1038/s41392-020-00443-w] [PMID] []
15. Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B, et al. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother. 2019; 110: 775-85. [Persian] DOI: 10.1016/j.biopha.2018.12.022 [DOI:10.1016/j.biopha.2018.12.022] [PMID]
16. Almatroodi SA, Alsahli MA, Rahmani AH. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules. 2022; 27(18): 5889. DOI: 10.3390/molecules27185889 [DOI:10.3390/molecules27185889] [PMID] []
17. Salehi B, Selamoglu Z, Sener B, Kilic M, Kumar Jugran A, de Tommasi N, et al. Berberis plants-drifting from farm to food applications, phytotherapy, and phytopharmacology. Foods. 2019; 8(10): 522. [Persian] DOI: 10.3390/foods8100522 [DOI:10.3390/foods8100522] [PMID] []
18. Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med. 2020; 14(5): 564-82. DOI: 10.1007/s11684-019-0724-6 [DOI:10.1007/s11684-019-0724-6] [PMID]
19. Hooshmand Moghadam B, Kordi MR, Mahdian S. The effect of Barberry Juice supplement on Prostaglandin E2 level caused by intense aerobic activity in active young girls. J Birjand Univ Med Sci. 2017; 24: 1-9. [Persian] URL: http://journal.bums.ac.ir/article-1-2235-en.html
20. Malhotra B, Kulkarni GT, Dhiman N, Joshi D, Chander S, Kharkwal A, et al. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J Herb Med. 2021; 27(6): 100433. DOI:10.1016/j.hermed.2021.100433 [DOI:10.1016/j.hermed.2021.100433]
21. Rokade M, Vichare V, Neve T, Parande B, Dhole S. A review on anticancer potential of Berberis aristata and berberine with focus on quantitative methods. Journal of Preventive, Diagnostic and Treatment Strategies in Medicine. 2022; 1(2): 67-75. DOI: 10.4103/jpdtsm.jpdtsm_9_22
22. Moldovan C, Frumuzachi O, Babotă M, Menghini L, Cesa S, Gavan A, et al. Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq. Antioxidants. 2021; 10(10): 1579. DOI: 10.3390/antiox10101579 [DOI:10.3390/antiox10101579] [PMID] []
23. Shekarabi SPH, Mehrgan MS, Ramezani F, Dawood MA, Van Doan H, Moonmanee T, et al. Effect of dietary barberry fruit (Berberis vulgaris) extract on immune function, antioxidant capacity, antibacterial activity, and stress-related gene expression of Siberian sturgeon (Acipenser baerii).Aquac. Rep. 2022; 23: 101041. DOI:10.1016/j.aqrep.2022.101041 [DOI:10.1016/j.aqrep.2022.101041]
24. Mishra R, Nathani S, Varshney R, Sircar D, Roy P. Berberine reverses epithelial-mesenchymal transition and modulates histone methylation in osteosarcoma cells. Mol Biol Rep. 2020; 47(11): 8499-511. DOI: 10.1007/s11033-020-05892-8 [DOI:10.1007/s11033-020-05892-8] [PMID]
25. Chavda VP, Nalla LV, Balar P, Bezbaruah R, Apostolopoulos V, Singla RK, et al. Advanced Phytochemical-Based Nanocarrier Systems for the Treatment of Breast Cancer. Cancers. 2023; 15(4): 1023. DOI: 10.3390/cancers15041023 [DOI:10.3390/cancers15041023] [PMID] []
26. Chuang TC, Wu K, Lin YY, Kuo HP, Kao MC, Wang V, et al. Dual down‐regulation of EGFR and ErbB2 by berberine contributes to suppression of migration and invasion of human ovarian cancer cells. Environ Toxicol. 2021; 36(5): 737-47. DOI: 10.1002/tox.23076 [DOI:10.1002/tox.23076] [PMID]
27. Luo Y, Tian G, Zhuang Z, Chen J, You N, Zhuo L, et al. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am J Transl Res. 2019; 11(5): 2668. PMCID: PMC6556646 PMCID: PMC6556646
28. Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, Aslam T, Patanwala I, Gaggar S, Cole M, Sumpter K, Stewart S, Rose J, Hudson M, Manas D, Reeves HL. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60: 110-117. DOI: 10.1016/j.jhep.2013.08.011 [DOI:10.1016/j.jhep.2013.08.011] [PMID]
29. Zheng R, Li F, Li F, Gong A. Targeting tumor vascularization: promising strategies for vascular normalization. J Cancer Res Clin Oncol. 2021; 147(9): 2489-505. DOI: 10.1007/s00432-021-03701-8 [DOI:10.1007/s00432-021-03701-8] [PMID]
30. Campisi A, Acquaviva R, Mastrojeni S, Raciti G, Vanella A, De Pasquale R. Effect of berberine and Berberis aetnesis alkaloid extract on tissue trans glutaminase in primary astroglia cell cultures. Phytotherapy Research Journal, 2010, 25(6): 816-820. DOI: 10.1002/ptr.3340 [DOI:10.1002/ptr.3340] [PMID]
31. Tan W,Li n, Tan R, Zhong Z, Suo Z, Yang X. 2014. Berberine interfered with breast cancer cells metabolism, balancing energy homeostasis. Anticancer Agents Med. Chem. 15(1): 66-78. DOI: 10.2174/1871520614666140910120518 [DOI:10.2174/1871520614666140910120518] [PMID]
32. Kim S, Oh SJ, Lee J, Han J, Jeon M, Jung T, Nam SJ. Berberine suppresses TPA induced fibronectin expression through the inhibition of secretion in breast cancer cells. Cellular Physiology and Biochemistry. 2013, 32(5): 15341-1550. DOI: 10.1159/000356591 [DOI:10.1159/000356591] [PMID]
33. Meng Z, Li T, Ma X, Wang X, Ness C. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca/calmadulin-dependent protein kinas II. Molecular Cancer Therapeutics. 2013, 12(10): 2067-77. DOI: 10.1158/1535-7163.MCT-13-0314 [DOI:10.1158/1535-7163.MCT-13-0314] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Birjand University of Medical Sciences

Designed & Developed by : Yektaweb