Volume 30, Issue 3 (December 2023)                   J Birjand Univ Med Sci. 2023, 30(3): 268-279 | Back to browse issues page

Research code: IR.KMU.REC.1399.688
Ethics code: IR.KMU.REC.1399.688


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pirani H, Salehi O, Khoramipour K, Golestaneh F. The effect of eight weeks of high-intensity interval training on changes in the levels of leptin, adiponectin and insulin levels in male Wistar rats. Journals of Birjand University of Medical Sciences 2023; 30 (3) :268-279
URL: http://journal.bums.ac.ir/article-1-3266-en.html
1- Department of Faculty Member of Chabahar Maritime University, Chabahar, Iran , hn.piranis@gmail.com
2- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
3- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Physiology Research Center and Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
4- Department of Faculty Member of Chabahar Maritime University, Chabahar, Iran
Abstract:   (1019 Views)
Background and Aims: Obesity leads to impaired secretion and expression of adipokines in humans and causes the onset of type 2 diabetes. Although the role of regular exercise in the prevention of metabolic diseases has been reported, the mechanism of high-intensity exercise is still not well understood. Therefore, the aim of the present study was to investigate the effects of 8 weeks of high-intensity interval training on the changes in insulin, leptin and adiponectin levels in male Wistar rats with type 2 diabetes.
Materials and Methods: In this experimental study 20 male Wistar rats aged 8-10 weeks were randomly divided into four groups: Control, type 2 diabetes, exercise, and diabetes-exercise. Type 2 diabetes was induced by a high-fat diet and a single dose of streptozotocin (STZ). The rats in the exercise and diabetes-exercise groups completed 8 weeks of HIIT training (running at an intensity of 85-95% of maximum speed, intervals of 4-10). Insulin, adiponectin and leptin levels were measured in serum. Homeostasis Model Assessment for Insulin Resistance (HOMA-IR), the Homeostasis Model Assessment for Insulin Resistance-beta (HOMA-β) and the Quantitative Assessment of Insulin Sensitivity Index (QUICKI) were calculated to assess insulin resistance and sensitivity.
Results: Diabetes decreased the level of insulin, adiponectin and leptin in serum. HIIT reversed the impairments caused by diabetes. HOMA-IR, HOMA-β and QUICKI also improved in the diabetes-exercise groups.
Conclusion: Overall, our results confirmed that diabetes has detrimental effects on serum leptin, adiponectin and insulin indices and that HIIT training can improve these disorders.


*Corresponding Author: Hossein PiraniEmails: hn.piranis@gmail.com

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 717 kb]   (337 Downloads)    
Type of Study: Original Article | Subject: Exercise Physiology
Received: 2023/04/25 | Accepted: 2023/12/23 | ePublished ahead of print: 2023/12/22 | ePublished: 2023/12/24

References
1. Speight J, Browne JL, Holmes-Truscott E, Hendrieckx C, Pouwer F. Diabetes MILES-Australia (Management and Impact for Long-term Empowerment and Success): methods and sample characteristics of a national survey of the psychological aspects of living withtype 1 or type 2 diabetes in Australian adults. BMC public health. 2012; 12(1): 1-13. DOI: 10.1186/1471-2458-12-120 [DOI:10.1186/1471-2458-12-120] [PMID] []
2. Rong F, Dai H, Wu Y, Li J, Liu G, Chen H, et al. Association between thyroid dysfunction and type 2 diabetes: a meta-analysis of prospective observational studies. BMC med. 2021; 19: 257. DOI: 10.1186/s12916-021-02121-2 [DOI:10.1186/s12916-021-02121-2] [PMID] []
3. Khajouee E, Elahi-Moghaddam Z, Behnam-Rasouli M, Mahdavi-Shahri N. Comparative study of the effects of type I and type II diabetes on biochemical factor slevels & histological changes in thyroid gland in male wistar rats. IJDM. 2014; 13(5): 375-82. [Persian] http://ijdld.tums.ac.ir/article-1-5249-en.html
4. Kumar A, Gangwar R, Zargar A, Kumar R, Sharma A. Prevalence of diabetes in India: A review of IDF Diabetes Atlas 10th edition. Curr Diabetes Rev.‌ 2023; 13: 37069712, DOI: 10.2174/1573399819666230413094200 [DOI:10.2174/1573399819666230413094200] [PMID]
5. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice. Diabetes Res Clin Pract. 2010; 87(1): 4-14. DOI: 10.1016/j.diabres.2009.10.007 [DOI:10.1016/j.diabres.2009.10.007] [PMID]
6. Guariguata L. By the numbers: new estimates from the IDF Diabetes Atlas Update for 2012. Diabetes research and clinical practice. Diabetes Res Clin Pract. 2012; 98(3): 524-5. DOI: 10.1016/j.diabres.2012.11.006 [DOI:10.1016/j.diabres.2012.11.006] [PMID]
7. Romacho T, Elsen M, Röhrborn D, Eckel J. Adipose tissue and its role in organ crosstalk.Acta Physiol (Oxf). 2014; 210(4): 733-53. DOI: 10.1111/apha.12246 [DOI:10.1111/apha.12246] [PMID]
8. Knights AJ, Funnell AP, Pearson RC, Crossley M, Bell-Anderson KS. Adipokines and insulin action: A sensitive issue. Adipocyte. 2014; 3(2): 88-96. DOI: 10.4161/adip.27552 [DOI:10.4161/adip.27552] [PMID] []
9. Forny-Germano L, De Felice FG, Vieira MNdN. The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer's disease.Front Neurosci. 2019; 12: 1027. DOI: 10.3389/fnins.2018.01027 [DOI:10.3389/fnins.2018.01027] [PMID] []
10. Park H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015; 64(1): 24-34. DOI: 10.1016/j.metabol.2014.08.004 [DOI:10.1016/j.metabol.2014.08.004] [PMID] []
11. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance.Mol Med. 2008; 14(11): 741-51. DOI: 10.2119/2008-00058.Rabe [DOI:10.2119/2008-00058.Rabe] [PMID] []
12. Rudzka-Kocjan A, Szarras-Czapnik M, B J, Ginalska-Malinowska M. Estimation of the correlation of insulin resistance and selected adipocytokines in children with simple obesity--preliminary study. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2006; 12(3): 211-5. https://pubmed.ncbi.nlm.nih.gov/17020658/
13. Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion.Horm Mol Biol Clin Investig. 2015; 21(1): 57-74. DOI: 10.1515/hmbci-2014-0037 [DOI:10.1515/hmbci-2014-0037] [PMID]
14. Duncan BB, Schmidt MI, Pankow JS, Bang H, Couper D, Ballantyne CM, et al. Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2004; 53(9): 2473-78. DOI: 10.2337/diabetes.53.9.2473 [DOI:10.2337/diabetes.53.9.2473] [PMID]
15. Kadoglou NP, Iliadis F, Angelopoulou N, Perrea D, Ampatzidis G, Liapis CD, et al. The anti-inflammatory effects of exercise training in patients with type2diabetes mellitus.Eur J Cardiovasc Prev Rehabil. 2007; 14(6): 837-43. DOI: 10.1097/HJR.0b013e3282efaf50 [DOI:10.1097/HJR.0b013e3282efaf50] [PMID]
16. Bahrami A, Saremi A. Effect of caloric restriction with or without aerobic training on body composition, blood lipid profile, insulin resistance, and inflammatory marker in middle-age obese/overweight men. J Arak Univ Med Sci. 2011; 14(3): 11-9. [Persian].http://jams.arakmu.ac.ir/article-1-779-en.html
17. Riyahi, V., Morovvati, H., KHosravi, A. The effect of a period of resistance, endurance and high-intensity interval training on insulin resistance in obese diabetic Wistar rats. JPMH, 2023; 3(1): 41-54.
18. Racil G, Ben Ounis O, Hammouda O, Kallel A, Zouhal H, Chamari K, et al. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females.Eur J Appl Physiol. 2013; 113(10): 2531-40. DOI: 10.1007/s00421-013-2689-5 [DOI:10.1007/s00421-013-2689-5] [PMID]
19. Clarson CL, Brown HK, De Jesus S, Jackman M, Mahmud FH, Prapavessis H, et al. Effects of a comprehensive, intensive lifestyle intervention combined with metformin extended release in obese adolescents.Int Sch Res Notices. 2014; 659410. DOI: 10.1155/2014/659410 [DOI:10.1155/2014/659410] [PMID] []
20. khoramipour K, Bejeshk MA, Rajizadeh MA, Najafipour H, Dehghan P. High-intensity interval training ameliorate diabetes-induced disturbances in Alzheimer's-related factorsin the hippocampus through adiponectin signaling. Mol Neurobiol. 2022; 60(6): 3486-95. DOI: 10.1007/s12035-023-03285-z [DOI:10.1007/s12035-023-03285-z] [PMID]
21. Frankenberg ADv, Reis AF, Gerchman F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: a literature review.Arch Endocrinol Metab. 2017; 61(6): 614-22. DOI: 10.1590/2359-3997000000316 [DOI:10.1590/2359-3997000000316] [PMID] []
22. Parastesh M, Saremi A, Ahmadi A, Kaviani M. The effect of aerobic training on serum levels of adiponectin, hypothalamic-pituitary-gonadal axis and sperm quality in diabetic rats. Urol J. 2019; 16(06): 592-7. [Persian]. DOI: 10.22037/uj.v0i0.4728
23. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans.J Clin Endocrinol Metab. 2000; 85(7): 2402-10. DOI: 10.1210/jcem.85.7.6661 [DOI:10.1210/jcem.85.7.6661] [PMID]
24. Velasque MT, Bhathena SJ, Hansen CT. Leptin and its relation to obesity and insulin in the SHR/N-corpulent rat, a model of type II diabetes mellitus.Int J Exp Diabetes Res. 2001; 2(3): 217-23. DOI: 10.1155/EDR.2001.217 [DOI:10.1155/EDR.2001.217] [PMID] []
25. Casado M E, Collado-Pérez R, Frago L M, Barrios V. Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci. 2023; 24(2), 1422. DOI: 10.3390/ijms24021422 [DOI:10.3390/ijms24021422] [PMID] []
26. Picó C, Palou M, Pomar C A, Rodríguez A M, Palou A. Leptin as a key regulator of the adipose organ. Rev Endocr Metab Disord. 2022; 23(1): 13-30.‌ DOI: 10.1007/s11154-021-9687 [DOI:10.1007/s11154-021-09687-5] [PMID] []
27. Azar JT, Hemmatinafar M, Nemati J. Effect of six weeks of high intensity interval training on leptin levels, lipid profile and fat percentage in sedentary young men. Sport Sci. 2018; 11(1): 78-82. [Persian] https://www.researchgate.net/publication/330343986
28. Abbasi S, Khaledi N, Askari H. High intensity interval training increases the expression of hippocampus BDNF gene and decreases the serum tnf-α in Diabetic Rat. Med J Tabriz Uni Med Sciences. 2020; 42(5): 591-600. [Persian]. DOI:10.34172/j.2020.083 [DOI:10.34172/mj.2020.083]
29. Santa Mina D, Connor MK, Alibhai SM, Toren P, Guglietti C, Matthew AG, et al. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: A randomized study. Can Urol Assoc J. 2013; 7(11-12): E692-8. DOI: 10.5489/cuaj.235 [DOI:10.5489/cuaj.235] [PMID] []
30. Gonzalez-Gil AM, Elizondo-Montemayor L. The role of exercise in the interplay between myokines, hepatokines, osteokines, adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: a review. Nutrients. 2020; 12(6): 1899. DOI: 10.3390/nu12061899 [DOI:10.3390/nu12061899] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb