Volume 30, Issue 2 (October 2023)                   J Birjand Univ Med Sci. 2023, 30(2): 141-152 | Back to browse issues page

Research code: 3/57995
Ethics code: IR.UM.REC.1401.083


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nohtani F, Behnam Rasouli M, Kheirabadi M. Comparison of antioxidant and analgesic effects of gallic acid and metformin in streptozotocin-induced hyperglycemic rats. Journals of Birjand University of Medical Sciences 2023; 30 (2) :141-152
URL: http://journal.bums.ac.ir/article-1-3254-en.html
1- Biology Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2- Biology Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , behnam@um.ac.ir
Abstract:   (618 Views)
Background and Aims: Hyperglycemia is associated with decreased activity of antioxidant enzymes and damage to peripheral nerves. The present study aimed to compare the antioxidant and analgesic effects of gallic acid (a natural compound) with metformin (a chemical drug) in hyperglycemic conditions.
Materials and Methods: Hyperglycemia was induced in male rats by the intraperitoneal injection of Streptozotocin (STZ) at a dose of 60 mg/Kg. For this research, rats were assigned to four groups. Two groups were healthy control and hyperglycemic control rats that did not receive any drugs. The other two groups were hyperglycemic rats, which respectively received metformin at a dose of 300 mg/kg/day and gallic acid at a dose of 40 mg/kg/day. At the beginning of the 8-week period for all groups, every two weeks, hot-plate and tail-flick tests were taken, and at the end of the period, the rats were anesthetized, and their blood test was performed to measure the activity of antioxidant enzymes. Data analysis was performed in SPSS software using one-way ANOVA and Tukey's post hoc test.
Results: The administration of metformin and gallic acid in hyperglycemic rats for eight weeks increased the pain threshold and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (P<0.05).
Conclusion: Gallic acid, like Metformin, can be effective in the improvement of complications caused by hyperglycemic conditions. Therefore, gallic acid may have a clinical application in the treatment of diabetic patients in the future.
 

*Corresponding Author: Morteza Behnam RasouliEmails: behnam@um.ac.ir

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 481 kb]   (299 Downloads)    
Type of Study: Original Article | Subject: Physiology
Received: 2023/03/13 | Accepted: 2023/07/2 | ePublished ahead of print: 2023/08/16 | ePublished: 2023/10/7

References
1. Tan SY, Mei-Wong JL, Sim YJ, Wong SS, Mohamed-Elhassan SA, Tan SH, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 2019; 13(1): 364-72. DOI: 10.1016/j.dsx.2018.10.008 [DOI:10.1016/j.dsx.2018.10.008] [PMID]
2. Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013; 42(4): 747-87. DOI: 10.1016/j.ecl.2013.06.001 [DOI:10.1016/j.ecl.2013.06.001] [PMID]
3. Bruschi LKM, Rocha DA, Filho ELG, Barboza NMP, Frisanco PAB, Callegaro RM, et al. Diabetes Mellitus and Diabetic Peripheral Neuropathy. Open J Endocr Metab Dis. 2017; 7(1): 12-21. DOI: 10.4236/ojemd.2017.71002 [DOI:10.4236/ojemd.2017.71002]
4. Maritim AC, Sanders RA, Watkins-Iii JB. Diabetes, oxidative stress, and antioxidants. J Biochem Mol Toxicol. 2003; 17(1): 24-38. DOI: 10.1002/jbt.10058 [DOI:10.1002/jbt.10058] [PMID]
5. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015; 30(1): 11-26. DOI: 10.1007/s12291-014-0446-0 [DOI:10.1007/s12291-014-0446-0] [PMID] []
6. Pasaoglu H, Sancak B, Bukan N. (2004). Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohoku J Exp Med. 2004; 203(3): 211-8. DOI: 10.1620/tjem.203.211 [DOI:10.1620/tjem.203.211] [PMID]
7. Nna VU, Abu Bakar AB, Md-Lazin MRML, Mohamed M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2018; 120(2): 305-20. DOI: 10.1016/j.fct.2018.07.028 [DOI:10.1016/j.fct.2018.07.028] [PMID]
8. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013; 19(5): 1649-54. DOI: 10.1038/nm.3372 [DOI:10.1038/nm.3372] [PMID] []
9. Labbe M, Ulloa PA, Lopez F, Saenz C, Pena A, Salazar FN. Characterization of chemical compositions and bioactive compounds in juices from pomegranates ('Wonderful', 'Chaca' and 'Codpa') at different maturity stages. Chil J Agric Res. 2016; 76(2): 479-86. DOI: 10.4067/S0718-58392016000400012 [DOI:10.4067/S0718-58392016000400012]
10. Karimi M, Sadeghi R, Kokini J. Pomegranate as a promising opportunity in medicine and nanotechnology. Trends Food Sci Technol. 2017; 69(1): 59-73. DOI: 10.1016/j.tifs.2017.08.019 [DOI:10.1016/j.tifs.2017.08.019]
11. Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr. 2012; 109(5): 802-9. DOI: 10.1017/S0007114512002206 [DOI:10.1017/S0007114512002206] [PMID]
12. Moreira J, Klein-Junior LC, Cechinel Filho V, Campos Buzzi F. Anti-hyperagesic activity of corilagin, a tannin isolated from phyllanthus niruri L. (Euphorbiaceae). J Ethnopharmacol. 2013; 146(1): 318-23. DOI: 10.1016/j.jep.2012.12.052 [DOI:10.1016/j.jep.2012.12.052] [PMID]
13. Adiga S, Bairy KL, Meharban A, Punita ISR. Hypoglycemic effect of aqueous extract of Trichosanthes dioica in normal and diabetic rats. Int J Diabetes Dev Ctries. 2010; 30(1): 38-42. DOI: 10.4103/0973-3930.60011 [DOI:10.4103/0973-3930.60011] [PMID] []
14. Ulrike AF, Reinhold C, Dietmar RK. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem. 2011; 127(2): 807-21. DOI: 10.1016/j.foodchem.2010.12.156 [DOI:10.1016/j.foodchem.2010.12.156] [PMID]
15. Zhou D, Yang Q, Tian T, Chang Y, Li Y, Duan LR, et al. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed Pharmacother. 2020; 126: 110075. DOI: 10.1016/j.biopha.2020.110075 [DOI:10.1016/j.biopha.2020.110075] [PMID]
16. Kaur S, Muthuraman A. Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicol Rep. 2019; 6(1): 505-13. DOI: 10.1016/j.toxrep.2019.06.001 [DOI:10.1016/j.toxrep.2019.06.001] [PMID] []
17. Oboh G, Ogunsuyi OM, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on a-amylase anda-glucosidase inhibitory properties of acarbose. J Food Drug Anal. 2016; 24(3):627-634. DOI: 10.1016/j.jfda.2016.03.003 [DOI:10.1016/j.jfda.2016.03.003] [PMID] []
18. Doan KV, Ko CM, Kinyua AW, Yang DJ, Choi YH, Oh IY, et al. Gallic Acid Regulates Body Weight and Glucose Homeostasis Through AMPK Activation. Endocrinology. 2015; 156(1): 157-68. DOI: 10.1210/en.2014-1354 [DOI:10.1210/en.2014-1354] [PMID]
19. Rosas EC, Correa LB, Henriques MGAnti inflammatory Properties of Schinus terebinthifolius and Its Use in Arthritic Conditions. Bioactive Food as Dietary Intervention for Arthritis and Related Inflammatory Diseases. 2019; 28(1):489-503. DOI: 10.1016/j.jep.2015.10.014 [DOI:10.1016/j.jep.2015.10.014] [PMID]
20. Weidong X, Yaou Z, Naili W, Hua Z, Lijun D, Xiaohui M, et al. Novel effects of macrostemonoside A., a compound from Allium macrostemon Bung, on hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur J Pharmacol. 2008; 599(1-3): 159-65. DOI: 10.1016/j.ejphar.2008.09.042 [DOI:10.1016/j.ejphar.2008.09.042] [PMID]
21. Bianchi R, Buyukakilli B, Brines M, Savino C, Cavaletti G, Oggioni N, et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci. 2004; 101(3), 823-8. DOI: 10.1073/pnas.0307823100 [DOI:10.1073/pnas.0307823100] [PMID] []
22. Bannon AW, Malmberg AB. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci. 2007; Chapter 8, unit 8 9. DOI: 10.1002/0471142301.ns0809s41 [DOI:10.1002/0471142301.ns0809s41] [PMID]
23. Bhatia A, Saikia PP, Dkhar B, Pyngrope H. Anesthesia protocol for ear surgery in Wistar rats (animal research). Anim Models Exp Med. 2022; 5(2): 183-8. DOI: 10.1002/ame2.12198 [DOI:10.1002/ame2.12198] [PMID] []
24. Netaji T, Niture DG, Patil RS. Somani and Rajkumari S. Sahane. Effect of rutin on early diabetic neuropathy in experimental animals. J Nat Prod Pla Res. 2014; 4 (4):1-9. URL: https://www.scholarsresearchlibrary.com/abstract/effect-of-rutin-on-early-diabetic-neuropathy-in experimental-animals-7723.html
25. Várkonyi T, Körei A, Putz Z, Martos T, Keresztes K, Lengyel C, et al. Advances in the management of diabetic neuropathy. Minerva Med. 2017; 108(1): 419-37. DOI: 10.23736/S0026-4806.17.05257-0 [DOI:10.23736/S0026-4806.17.05257-0] [PMID]
26. Bai B, Chen H. Metformin: A Novel Weapon Against Inflammation. Front Pharmacol. 2021; 12:622262. DOI: 10.3389/fphar.2021.622262 [DOI:10.3389/fphar.2021.622262] [PMID] []
27. Baeza-Flores GDC, Guzmán-Priego CG, Parra-Flores LI, Murbartián J, Torres-López JE, Granados-Soto V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front Pharmacol. 2020; 11: 558474. DOI: 10.3389/fphar.2020.558474 [DOI:10.3389/fphar.2020.558474] [PMID] []
28. Dai J, Liu M, Ai Q, Lin L, Wu K, Deng X, et al. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury. Chem Biol Interact. 2014; 216(1): 34-42. DOI: 10.1016/j.cbi.2014.03.013 [DOI:10.1016/j.cbi.2014.03.013] [PMID]
29. Cao L, Zhi D, Han J, Sah SK, Xie y. Combinational effect of curcumin and metformin against gentamicin-induced nephrotoxicity: Involvement of antioxidative, anti-inflammatory and antiapoptotic pathway. J Food Biochem. 2019; 43: e12836. DOI: 10.1111/jfbc.12836 [DOI:10.1111/jfbc.12836]
30. Ahmad I, Ahmad Khan M.S, Cameotra SS. Quality assessment of herbal drugs and medicinal plant products. Enc Anal Chem. 2014; 1-17. DOI:10.1002/9780470027318.a9946 [DOI:10.1002/9780470027318.a9946]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Birjand University of Medical Sciences

Designed & Developed by : Yektaweb