Volume 30, Issue 3 (December 2023)                   J Birjand Univ Med Sci. 2023, 30(3): 204-215 | Back to browse issues page

Research code: A-10-2997-2
Ethics code: A-10-2997-2
Clinical trials code: A-10-2997-2


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi F, Erfanian N, Karbasi S, Zomorodipour A. Strategies for Hemophilia Treatment, a literature review of current evidence. Journals of Birjand University of Medical Sciences 2023; 30 (3) :204-215
URL: http://journal.bums.ac.ir/article-1-3252-en.html
1- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran & Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
2- Student Research Committee, Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
3- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
4- Department of Molecular Medicine, Institute of Medical Biotechnology, Institute of Genetic Engineering and Biotechnology Tehran, Iran , zomorodi@nigeb.ac.ir
Abstract:   (1036 Views)
Hemophilia is an inherited bleeding disorder caused by malfunctioning or lacking blood coagulation factor VIII (hemophilia A) or IX (hemophilia B). Currently, the main treatments for these X-linked diseases are replacement therapy using periodic and regular injections of plasma-derived coagulation factors or their recombinant products. The use of recombinant coagulation factors is due to the need for periodic and regular injections to prevent bleeding in the acute type of hemophilia and in turn imposing a financial burden on patients. On the other hand, this treatment method is not available to all patients, especially those in developing countries. Recently, gene therapy has been proposed as a suitable, cost-effective, and permanent treatment option for hemophilia. This method is expected to solve the problems we currently face in treating hemophilia. Hemophilia is suitable for gene therapy since an abnormal gene is responsible for the disease. During the last two years, successful clinical trials for gene therapy using vectors derived from adeno-associated virus for both hemophilia A and hemophilia B have been conducted and approved for administration. Moreover, new methods based on gene-cell therapy and genome editing are under investigation for the treatment of hemophilia. This review article deals with different approaches for hemophilia treatments from the past to the present, particularly gene therapy methods.


*Corresponding Author: Alireza ZomorodipourEmails: zomorodi@nigeb.ac.ir

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 553 kb]   (416 Downloads)    
Type of Study: Review | Subject: Biotechnology
Received: 2023/07/14 | Accepted: 2023/12/22 | ePublished: 2023/12/24

References
1. George LA, Sullivan SK, Giermasz A, Rasko JE, Samelson-Jones BJ, Ducore J, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017; 377(23): 2215-27. DOI: 10.1056/NEJMoa1708538 [DOI:10.1056/NEJMoa1708538] [PMID] []
2. Ohmori T, Mizukami H, Ozawa K, Sakata Y, Nishimura S. New approaches to gene and cell therapy for hemophilia. J Thromb Haemost. 2015. 13: S133-S42. DOI: 10.1111/jth.12926 [DOI:10.1111/jth.12926] [PMID]
3. Ghasemi F, Zomorodipour A, Karkhane AA, Khorramizadeh MR. In silico designing of hyper-glycosylated analogs for the human coagulation factor IX. J Mol Graph Model. 2016; 68: 39-47. DOI: 10.1016/j.jmgm.2016.05.011 [DOI:10.1016/j.jmgm.2016.05.011] [PMID]
4. Butterfield JS, Hege KM, Herzog RW, Kaczmarek R. A molecular revolution in the treatment of hemophilia. Mol Ther. 2020; 28(4): 997-1015. DOI: 10.1016/j.ymthe.2019.11.006 [DOI:10.1016/j.ymthe.2019.11.006] [PMID] []
5. Chuah MK, Evens H, VandenDriessche T. Gene therapy for hemophilia. J Thromb Haemost. 2013; 1199-110. DOI: [DOI:10.1111/jth.12215] [PMID]
6. Samelson-Jones BJ, Arruda VR. Protein-engineered coagulation factors for hemophilia gene therapy. Mol Ther Methods Clin Dev. 2019; 12: 184-201. DOI: 10.1016/j.omtm.2018.12.007 [DOI:10.1016/j.omtm.2018.12.007] [PMID] []
7. Franchini M, Veneri D, Lippi G. Inherited factor XI deficiency: a concise review. Hematology. 2006; 11(5-6): 307-9. DOI: 10.1080/10245330600921964 [DOI:10.1080/10245330600921964] [PMID]
8. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000. 24(3): 257-61. DOI: 10.1038/73464 [DOI:10.1038/73464] [PMID]
9. Kevane B, O'Connell N. The current and future role of plasma-derived clotting factor concentrate in the treatment of haemophilia A. Transfus Apher Sci. 2018. 57(4): 502-6. DOI: 10.1016/j.transci.2018.07.012 [DOI:10.1016/j.transci.2018.07.012] [PMID]
10. Hermans C, Brackmann HH, Schinco P, Auerswald G. The case for wider use of recombinant factor VIII concentrates. Crit Rev Oncol Hematol. 2012; 83(1): 11-20. DOI: 10.1016/j.critrevonc.2011.08.001 [DOI:10.1016/j.critrevonc.2011.08.001] [PMID]
11. Hoots Wk. The future of plasma‐derived clotting factor concentrates. Haemophilia. 2001; 7: 4-9. DOI: 10.1046/j.1365-2516.2001.00099.x [DOI:10.1046/j.1365-2516.2001.00099.x] [PMID]
12. Ghasemi F, Zomorodipour A, Karkhane A A, Khorramizadeh M. Production of a novel hyper-glycosylated human coagulation factor IX in HEK293 cells, using a Glyco-engineering Approach. Modares Journal of Biotechnology. 2020; 11(3): 50-8. URL: http://biot.modares.ac.ir/article-22-32209-en.html
13. Ghasemi F, Khorramizadeh MR, Karkhane AA, Zomorodipour A. Studying the Expression Efficiencies of Human Clotting Factor IX Analogs, Rationally-designed for Hyper-glycosylation. Iran J Pharm Res. 2021; 20(2): 523-35. DOI: 10.22037/ijpr.2020.112027.13503
14. Swiech K, Picanço-Castro V, Covas DT. Production of recombinant coagulation factors: are humans the best host cells? Bioengineered. 2017; 8(5): 462-70. DOI: 10.1080/21655979.2017.1279767 [DOI:10.1080/21655979.2017.1279767] [PMID] []
15. Armstrong EP, Malone DC, Krishnan S, Wessler MJ. Costs and utilization of hemophilia A and B patients with and without inhibitors. J Med Econ. 2014; 17(11): 798-802. DOI: 10.3111/13696998.2014.953679 [DOI:10.3111/13696998.2014.953679] [PMID]
16. Schulte S. Pioneering designs for recombinant coagulation factors. Thromb Res. 2011; 128: S9-S12. DOI: 10.1016/S0049-3848(12)70003-8 [DOI:10.1016/S0049-3848(12)70003-8] [PMID]
17. Miao CH. Hemophilia A gene therapy via intraosseous delivery of factor VIII-lentiviral vectors. Thromb J. 2016; 14(1): 93-9. DOI: 10.1186/s12959-016-0105-1 [DOI:10.1186/s12959-016-0105-1] [PMID] []
18. Schulte S. Innovative coagulation factors: albumin fusion technology and recombinant single-chain factor VIII. Thromb Res. 2013; 131: S2-S6. DOI: 10.1016/S0049-3848(13)70150-6 [DOI:10.1016/S0049-3848(13)70150-6] [PMID]
19. Bontempo FA, Lewis JH, Gorenc TJ, Spero JA, Ragni MV, Scott JP, et al. Liver transplantation in hemophilia A. Blood. 1987; 69(6): 1721-4. PMCID: PMC2965591 [DOI:10.1182/blood.V69.6.1721.bloodjournal6961721] [PMID]
20. Kidder W, Chang EY, M. Moran C, Rose SC, von Drygalski A. Persistent vascular remodeling and leakiness are important components of the pathobiology of re‐bleeding in hemophilic joints: two informative cases. Microcirculation. 2016; 23(5): 373-8. DOI: 10.1111/micc.12273 [DOI:10.1111/micc.12273] [PMID]
21. Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold? Ther Adv Hematol. 2018; 9(9): 273-93. DOI: 10.1177/2040620718791933 [DOI:10.1177/2040620718791933] [PMID] []
22. Reiss UM, Zhang L, Ohmori T. Hemophilia gene therapy-New country initiatives. Haemophilia. 2021; 27: 132-41. DOI: 10.1111/hae.14080 [DOI:10.1111/hae.14080] [PMID]
23. VandenDriessche T, Chuah MK. Hemophilia gene therapy: ready for prime time? Hum Gene Ther. 2017; 28(11): 1013-23. DOI: 10.1089/hum.2017.116 [DOI:10.1089/hum.2017.116] [PMID]
24. Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood. 2002; 99(2): 457-62. DOI: 10.1182/blood.v99.2.457 [DOI:10.1182/blood.V99.2.457] [PMID]
25. Roth DA, Tawa Jr NE, O'Brien JM, Treco DA, Selden RF. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med. 2001; 344(23): 1735-42. DOI: 10.1056/NEJM200106073442301 [DOI:10.1056/NEJM200106073442301] [PMID]
26. Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 2000; 25(1): 35-41. DOI: 10.1038/75568 [DOI:10.1038/75568] [PMID]
27. VandenDriessche T, Ivics Z, Izsvák Z, Chuah MK. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood.2009; 114(8): 1461-8. DOI: 10.1182/blood-2009-04-210427 [DOI:10.1182/blood-2009-04-210427] [PMID]
28. Keeler AM, ElMallah MK, Flotte TR. Gene therapy 2017: progress and future directions. Clin Transl Sci. 2017; 10(4): 242-8. DOI: 10.1111/cts.12466 [DOI:10.1111/cts.12466] [PMID] []
29. CROOKE ST. Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic Acid Drug Dev. .1998; 8(2): 133-4. DOI: 10.1089/oli.1.1998.8.133 [DOI:10.1089/oli.1.1998.8.133] [PMID]
30. Ulmer JM, Deck RR, DeWitt CM, Friedman A, Donnelly JJ, Liu MA. Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines. Vaccine. 1994; 12(16): 1541-4. DOI: 10.1016/0264-410x(94)90081-7 [DOI:10.1016/0264-410X(94)90081-7] [PMID]
31. Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J, et al. Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther. 2005; 16(1): 35-48. DOI: 10.1089/hum.2005.16.35 [DOI:10.1089/hum.2005.16.35] [PMID]
32. Hough C, Lillicrap D. Gene therapy for hemophilia: an imperative to succeed. J Thromb Haemost. 2005; 3(6): 1195-205. DOI: 10.1111/j.1538-7836.2005.01401.x [DOI:10.1111/j.1538-7836.2005.01401.x] [PMID]
33. Powell JS, Ragni MV, White GC, Lusher JM, Hillman-Wiseman C, Moon TE, et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood. 2003; 102(6): 2038-45. DOI: 10.1182/blood-2003-01-0167 [DOI:10.1182/blood-2003-01-0167] [PMID]
34. VandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, et al. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci U S A.1999; 96(18): 10379-84. DOI: 10.1073/pnas.96.18.10379 [DOI:10.1073/pnas.96.18.10379] [PMID] []
35. VandenDriessche T. Challenges and progress in gene therapy for hemophilia A. Blood. 2003; 102(6): 1938-9. DOI: 10.1182/blood-2003-07-2362 [DOI:10.1182/blood-2003-07-2362]
36. Mátrai J, Chuah MK, VandenDriessche T. VandenDriessche, Recent advances in lentiviral vector development and applications. Mol Ther. 2010; 18(3): 477-90. DOI: 10.1038/mt.2009.319 [DOI:10.1038/mt.2009.319] [PMID] []
37. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018; 359(6372): eaan4672. DOI: 10.1126/science.aan4672 [DOI:10.1126/science.aan4672] [PMID]
38. Johnston JM, Denning G, Doering CB, Spencer HT. Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther. 2013; 20(6): 607-15. DOI: 10.1038/gt.2012.76 [DOI:10.1038/gt.2012.76] [PMID] []
39. Milani M, Canepari C, Liu T, Biffi M, Russo F, Plati T, et al. Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nat Commun. 2022; 13(1): 2454. DOI: 10.1038/s41467-022-30102-3 [DOI:10.1038/s41467-022-30102-3] [PMID] []
40. Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011; 22(5): 595-604. DOI: 10.1089/hum.2010.202 [DOI:10.1089/hum.2010.202] [PMID] []
41. Ohmori T. Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol. 2020; 111(1): 31-41. DOI: 10.1007/s12185-018-2513-4 [DOI:10.1007/s12185-018-2513-4] [PMID]
42. George LA. Hemophilia gene therapy comes of age. Blood Adv. 2017; 1(26): 2591-9. DOI: 10.1182/bloodadvances.2017009878 [DOI:10.1182/bloodadvances.2017009878] [PMID] []
43. Navale MS, Bhosale MK, Mohite MM, Navale MS.Hemgenix as First Gene Therapy for Treatment of Haemophilia B. Haemophilia, 2022; 2(1). DOI: 10.48175/IJARSCT-7657 [DOI:10.48175/IJARSCT-7657]
44. Larkin H. First FDA-Approved Gene Therapy for Hemophilia. JAMA. 2023; 329(1): 14-14. DOI: 10.1001/jama.2022.23510 [DOI:10.1001/jama.2022.23510]
45. Herzog RW, VandenDriessche T, Ozelo MC. First hemophilia B gene therapy approved: More than two decades in the making. Mol Ther. 2023; 31(1): 1-2. DOI: 10.1016/j.ymthe.2022.12.001 [DOI:10.1016/j.ymthe.2022.12.001] [PMID] []
46. Tanne JH. FDA approves $3.5 m gene therapy for adults with haemophilia B. 2022; BMJ. Publishing Group. DOI: 10.1136/bmj.o2858 [DOI:10.1136/bmj.o2858] [PMID]
47. Philippidis A. BioMarin's ROCTAVIAN Wins Food and Drug Administration Approval As First Gene Therapy for Severe Hemophilia A. Hum Gene Ther. 2023; 34(15-16): 665-8. DOI: 10.1089/hum.2023.29251.bfs [DOI:10.1089/hum.2023.29251.bfs] [PMID]
48. Rogers GL, Chen HY, Morales H, Cannon PM. Homologous recombination-based genome editing by clade F AAVs is inefficient in the absence of a targeted DNA break. Mol Ther. 2019; 27(10): 1726-36. DOI: 10.1016/j.ymthe.2019.08.019 [DOI:10.1016/j.ymthe.2019.08.019] [PMID] []
49. Perrin GQ, Herzog RW, Markusic DM. Update on clinical gene therapy for hemophilia. Blood. 2019; 133(5): 407-14. DOI: 10.1182/blood-2018-07-820720 [DOI:10.1182/blood-2018-07-820720] [PMID] []
50. Pipe SW,Selvaraj SR. Gene editing in hemophilia: a "CRISPR" choice? Blood. 2019; 133(26): 2733-4. DOI: 10.1182/blood.2019001180 [DOI:10.1182/blood.2019001180] [PMID]
51. Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell‐based therapy for hemophilia A. J Thromb Haemost. 2014; 12(12): 1954-65. DOI: 10.1111/jth.12750 [DOI:10.1111/jth.12750] [PMID] []
52. Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A. 2009; 106(3): 808-13. DOI: 10.1073/pnas.0812090106 [DOI:10.1073/pnas.0812090106] [PMID] []
53. Kashiwakura Y, Ohmori T, Mimuro J, Madoiwa S, Inoue M, Hasegawa M, et al. Production of functional coagulation factor VIII from iPSCs using a lentiviral vector. Haemophilia. 2014; 20(1): e40-4. DOI: 10.1111/hae.12311 [DOI:10.1111/hae.12311] [PMID]
54. Ramaswamy S, Tonnu N, Menon T, Lewis BM, Green KT, Wampler D, et al. Autologous and heterologous cell therapy for hemophilia B toward functional restoration of factor IX. Cell Rep. 2018; 23(5): 1565-80. DOI: 10.1016/j.celrep.2018.03.121 [DOI:10.1016/j.celrep.2018.03.121] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb