Volume 30, Issue 2 (October 2023)                   J Birjand Univ Med Sci. 2023, 30(2): 153-163 | Back to browse issues page

Research code: 456299
Ethics code: IR.BUMS.REC.1399.381


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadatfar N, Yousefi M, Hanafi-Bojd M Y, Rasti M. Antibacterial effect of glass ionomer cement containing metronidazole, ciprofloxacin, or penicillin V on Streptococcus mutans. Journals of Birjand University of Medical Sciences 2023; 30 (2) :153-163
URL: http://journal.bums.ac.ir/article-1-3242-en.html
1- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
2- Department of Microbiology, Faculty of Medicine, Bairjand University of Medical Science, Birjand, Iran
3- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran AND Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
4- Department of Restorative Dentistry, School of Dentistry, Birjand University of Medical Science, Birjand, Iran , marasti68@yahoo.com
Abstract:   (1044 Views)
Background and Aims: Glass ionomer cement (GIC) is used in atraumatic restorative treatment, full crown cementation, and root lesion repair. Glass ionomer cement can prevent secondary infections if it has antibacterial properties. Therefore, in the current study, the antibacterial effects of GIC containing different antibiotics and the rate of antibiotic release were investigated.
Materials and Methods: In the in vitro study, GIC discs containing 1.5% metronidazole, ciprofloxacin, or penicillin V antibiotics were first made. Afterward, the amount of antibiotic release from different discs was analyzed by spectroscopic method at 24, 72, and 168 h. The antibacterial effects of GIC discs containing antibiotics were evaluated by the disc diffusion method against the standard bacterial strain of Streptococcus mutans and compared with standard antibiotic discs.
Results: In the present study, antibiotic release from GIC discs containing penicillin could not be measured by spectroscopic method. Nevertheless, the rates of antibiotic release from GIC discs containing ciprofloxacin and metronidazole were about 41% and 66%, respectively in the first 24 h, and after 168 h, these release rates reached 53% and 75%, respectively. The results showed that GIC disc alone and GIC with metronidazole had no antibacterial effect on S. mutans. The mean scores of inhibition zone diameter of GIC discs containing penicillin and GIC containing ciprofloxacin were reported as 27.25±0.97 and 14.0±2.52 mm, respectively. Moreover, the GIC disc containing all three antibiotics had an inhibition zone diameter of 24.33±1.37 mm.
Conclusion: The inhibition zone diameter of penicillin was larger than that of the mixture of three antibiotics. Based on this observation, it can be concluded that the use of 1.5% penicillin is a more suitable choice for creating antibacterial properties in GIC compared to the mixture of three antibiotics.
 

*Corresponding Author: Maryam RastiEmails: marasti68@yahoo.com

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 540 kb]   (395 Downloads)    
Type of Study: Original Article | Subject: Dentistry
Received: 2023/01/28 | Accepted: 2023/07/25 | ePublished ahead of print: 2023/07/30 | ePublished: 2023/10/7

References
1. Saber AM, El-Housseiny AA, Alamoudi NM. Atraumatic restorative treatment and interim therapeutic restoration: a review of the literature. J Dent. 2019; 7(1): 28. DOI: doi.org/10.3390/dj7010028 [DOI:10.3390/dj7010028] [PMID] []
2. Jiang M, Fan Y, Li KY, Lo ECM, Chu CH, Wong MCM. Factors affecting success rate of atraumatic restorative treatment (ART) restorations in children: A systematic review and meta-analysis. J Dent. 2021; 104: 103526. DOI: doi.org/10.1016/j.jdent.2020.103526 [DOI:10.1016/j.jdent.2020.103526] [PMID]
3. Frencken JE. Atraumatic restorative treatment and minimal intervention dentistry. Br Dent J. 2017; 223(3): 183-9. DOI: doi.org/10.1038/sj.bdj.2017.664 [DOI:10.1038/sj.bdj.2017.664] [PMID]
4. Pascareli-Carlos AM, Martins LF, da Silva Gonçalves M, Imparato JCP, Tedesco TK. Pain perception of children after restorative treatments: Atraumatic restorative treatment versus chemomechanical removal-A noninferiority randomized clinical trial. J Indian Soc Pedod Prev Dent. 2021; 39(2): 202. DOI: 10.4103/jisppd.jisppd_426_20 [DOI:10.4103/jisppd.jisppd_426_20] [PMID]
5. Kumari PD, Shenoy SM, Khijmatgar S, Chowdhury A, Lynch E, Chowdhury CR. Antibacterial activity of new atraumatic restorative treatment materials incorporated with Azadirachta indica (Neem) against Streptococcus mutans. J Oral Biol Craniofac Res. 2019; 9(4): 321-5. DOI: doi.org/10.1016/j.jobcr.2019.06.014 [DOI:10.1016/j.jobcr.2019.06.014] [PMID] []
6. Frencken JE, Liang S, Zhang Q. Survival estimates of atraumatic restorative treatment versus traditional restorative treatment: a systematic review with meta-analyses. Br Dent J. 2021:1-11. DOI: doi.org/10.1038/s41415-021-2701-0 [DOI:10.1038/s41415-021-2701-0] [PMID]
7. Prabhakar A, Prahlad D, Kumar SR. Antibacterial activity, fluoride release, and physical properties of an antibiotic-modified glass ionomer cement. Pediatr Dent. 2013; 35(5): 411-5. PMID: 24290552
8. Park EY, Kang S. Current aspects and prospects of glass ionomer cements for clinical dentistry. Yeungnam Univ J Med. 2020; 37(3):169-78. DOI: doi.org/10.12701/yujm.2020.00374 [DOI:10.12701/yujm.2020.00374] [PMID] []
9. Nicholson JW. Adhesion of glass-ionomer cements to teeth: a review. Int J Adhes Adhess. 2016; 69: 33-8. DOI: doi.org/10.1016/j.ijadhadh.2016.03.012 [DOI:10.1016/j.ijadhadh.2016.03.012]
10. Fricker J. Therapeutic properties of glass‐ionomer cements: Their application to orthodontic treatment. Aust Dent J. 2022; 67(1): 12-20. DOI: doi.org/10.1111/adj.12888 [DOI:10.1111/adj.12888] [PMID]
11. Karimi N, Jabbari V, Nazemi A, Ganbarov K, Karimi N, Tanomand A, et al. Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb Pathog. 2020; 148: 104481. DOI: doi.org/10.1016/j.micpath.2020.104481 [DOI:10.1016/j.micpath.2020.104481] [PMID]
12. Lemos J, Palmer S, Zeng L, Wen Z, Kajfasz J, Freires I, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019; 7(1): 7.1. 03. DOI: doi.org/10.1128/microbiolspec.GPP3-0051-2018 [DOI:10.1128/microbiolspec.GPP3-0051-2018] [PMID] []
13. Pannu P, Gambhir R, Sujlana A. Correlation between the salivary Streptococcus mutans levels and dental caries experience in adult population of Chandigarh. India Eur J Dent. 2013; 7(02): 191-5. DOI: doi.org/10.4103/1305-7456.110169 [DOI:10.4103/1305-7456.110169] [PMID] []
14. Yesilyurt C, Er K, Tasdemir T, Buruk K, Celik D. Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper Dent. 2009; 34(1): 18-23. DOI: 10.2341/08-30 PMID: 19192833 [DOI:10.2341/08-30] [PMID]
15. Yan H, Yang H, Li K, Yu J, Huang C. Effects of chlorhexidine-encapsulated mesoporous silica nanoparticles on the anti-biofilm and mechanical properties of glass ionomer cement. Molecules. 2017; 22(7): 1225. DOI: DOI: 10.3390/molecules22071225 [DOI:10.3390/molecules22071225] [PMID] []
16. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater J. 2006; 22(7): 647-52. DOI: doi.org/10.1016/j.dental.2005.08.003 [DOI:10.1016/j.dental.2005.08.003] [PMID]
17. Kamranifar M, Allahresani A, Naghizadeh A. Synthesis and characterizations of a novel CoFe2O4@ CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. J Hazard Mater. 2019; 366: 545-55. DOI: doi.org/10.1016/j.jhazmat.2018.12.046 [DOI:10.1016/j.jhazmat.2018.12.046] [PMID]
18. Prabhakaran MP, Zamani M, Felice B, Ramakrishna S. Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile. Mater Sci Eng C. 2015; 56: 66-73. DOI: doi.org/10.1016/j.msec.2015.06.018 [DOI:10.1016/j.msec.2015.06.018] [PMID]
19. Cazedey ECL, Salgado HRN. Spectrophotometric determination of ciprofloxacin hydrochloride in ophthalmic solution. Adv anal chem. 2012; 2(6):74-9. DOI: doi.org/10.5923/j.aac.20120206.01 [DOI:10.5923/j.pc.20120206.06]
20. de Castilho AR, Duque C, Negrini TdC, Sacono NT, de Paula AB, Sacramento PA, et al. Mechanical and biological characterization of resin-modified glass-ionomer cement containing doxycycline hyclate. Arch Oral Biol. 2012; 57(2): 131-8. DOI: doi.org/10.1016/j.archoralbio.2011.08.009 [DOI:10.1016/j.archoralbio.2011.08.009] [PMID]
21. Salehi G, Behnamghader A, Pazouki M, Mozafari M. Metronidazole‐loaded glass ionomer dental cements. Int J Appl Ceram. 2020; 17(4): 1985-97. DOI: doi.org/10.1111/ijac.13480 [DOI:10.1111/ijac.13480]
22. England CG, Miller MC, Kuttan A, Trent JO, Frieboes HB. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur J Pharm Biopharm. 2015; 92: 120-9. DOI: doi.org/10.1016/j.ejpb.2015.02.017 [DOI:10.1016/j.ejpb.2015.02.017] [PMID] []
23. De Paula A, De Fúcio S, Alonso R, Ambrosano G, Puppin-Rontani R. Influence of chemical degradation on the surface properties of nano restorative materials. Oper Dent. 2014; 39(3): E109-E17. DOI: doi.org/10.2341/12-340 [DOI:10.2341/12-340] [PMID]
24. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S. Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med Chem. 2015; 5(7): 340-4. DOI: doi.org/10.4172/2161-0444.1000283 [DOI:10.4172/2161-0444.1000283]
25. Delaviz Y, Liu TW, Deonarain AR, Finer Y, Shokati B, Santerre JP. Physical properties and cytotoxicity of antimicrobial dental resin adhesives containing dimethacrylate oligomers of Ciprofloxacin and Metronidazole. Dent Mater J. 2019; 35(2): 229-43. DOI: doi.org/10.1016/j.dental.2018.11.016 [DOI:10.1016/j.dental.2018.11.016] [PMID]
26. Yap AU, Khor E, Foo S. Fluoride release and antibacterial properties of new-generation tooth colored restoratives. Oper Dent. 1999; 24: 297-305. PMID: 10823077
27. Vermeersch G, Leloup G, Delmee M, Vreven J. Antibacterial activity of glass-ionomer cements, compomers and resin composites: relationship between acidity and material setting phase. J Oral Rehabil. 2005; 32(5): 368-74. DOI: doi.org/10.1111/j.1365-2842.2004.01300.x [DOI:10.1111/j.1365-2842.2004.01300.x] [PMID]
28. Al-Shami IZ, Al-Hamzi MA, Al-Shamahy HA, Majeed A. Efficacy of some antibiotics against Streptococcus mutans associated with tooth decay in children and their mothers. On J Dent & Oral Health. 2019; 2(1). DOI: 10.33552/OJDOH.2019.02.000530. [DOI:10.33552/OJDOH.2019.02.000530]
29. Cantón R, Horcajada JP, Oliver A, Garbajosa PR, Vila J. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance.Enferm Infecc Microbiol Clin. 2013; 31: 3-11. DOI: doi.org/10.1016/S0213-005X(13)70126-5 [DOI:10.1016/S0213-005X(13)70126-5] [PMID]
30. Bakkeren E, Diard M, Hardt WD. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol. 2020; 18(9):479-90. DOI: doi.org/10.1038/s41579-020-0378-z [DOI:10.1038/s41579-020-0378-z] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb