Volume 31, Issue 3 (November 2024)                   J Birjand Univ Med Sci. 2024, 31(3): 195-204 | Back to browse issues page

Research code: IR.BUMS.REC.1401.260
Ethics code: IR.BUMS.REC.1401.260


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiafar K, Sayadi M, Karam F, Mesbahzadeh B. Increased survival rate in acute lymphoblastic leukemia treated with methotrexate by DR5 and Caspase-8 in hyperglycemic conditions. J Birjand Univ Med Sci. 2024; 31 (3) :195-204
URL: http://journal.bums.ac.ir/article-1-3462-en.html
1- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
2- Cardiovascular Diseases Research Center, Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran , mesbahmoeen@yahoo.com
Full-Text [PDF 424 kb]   (319 Downloads)     |   Abstract (HTML)  (697 Views)
Full-Text:   (205 Views)


ABSTRACT
Background and Aims: Considering the drug resistance of chemotherapy in diabetic patients and the prevalence of acute lymphoblastic leukemia in them, the present study aimed to investigate the effect of hyperglucose condition on the expression of DR5 and Caspase-8 genes in lymphoblastic cells (NALM-6) and its relationship to the cells' response to methotrexate.
Materials and Methods: In this in vitro study, NALM-6 cells were cultured in RPMI 1640 medium with 10% fetal bovine serum (FBS) containing antibiotics across four control groups: cells in the control group (C), cells treated with methotrexate (C+M), cells treated in an environment with high glucose concentration (G), and cells treated in an environment with high glucose concentration and methotrexate (G+M). The treated cells were subjected to hyperglucose conditions for 10 days in an environment with high glucose concentration. The survival rate of methotrexate-treated cells was evaluated by the MTT method, and then the relative expression of DR5 and Caspase-8 genes was measured by the RT-qPCR method. The statistical significance was defined as a P-value less than 0.05.
Results: The M group had 50% survival compared to the control group, and the G+M group had 58% survival compared to the control group. The expression of the DR5 gene in the group G+M compared to the G group was not significantly different (P>0.05); however, the expression of the caspase-8 gene in the G group was significantly lower compared to the control group (P<0.01) and also lower in the G group compared to the treated cells (P<0.001).
Conclusion: The findings indicated that the survival rate of NALM-6 cells in high concentrations of glucose after treatment with methotrexate was higher than the same condition in the control group, which indicates the effect of glucose resistance on drug treatment.
Keywords: Acute Lymphoblastic Leukemia, Caspase-8, Diabetes, DR5, Methotrexate


1.     Inaba H, Pui C-H. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10(9):1926. DOI: 10.3390/jcm10091926
2.     Ge Z, Song C, Ding Y, Tan B-H, Desai D, Sharma A, et al. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia. 2021; 35(5):1267-78. DOI: 10.1038/s41375-021-01132-5
3. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson J, Loscalzo J. Harrison's Principles of Internal Medicine: 18th ed. New York: McGraw Hill; 2015.
4.     Torrente Castells E, Barbosa de Figueiredo RP, Berini Aytés L, Gay Escoda C. Clinical features of oral lichen planus. A retrospective study of 65 cases.Med Oral Patol Oral Cir Bucal. 2010; 15(5): e685-90. 2010. DOI: 10.4317/medoral.15.e685
5.     Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol. 2014; 22(1): 182-91. DOI: 10.1016/j.intimp.2014.06.033
6.     Nengroo MA, Maheshwari S, Singh A, Verma A, Arya RK, Chaturvedi P, et al. CXCR4 intracellular protein promotes drug resistance and tumorigenic potential by inversely regulating the expression of Death Receptor 5. Cell Death Dis. 2021; 12(5): 464. DOI: 10.1038/s41419-021-03730-8
7.     De Vries J, Wammes L, Jedema I, Van Dreunen L, Nijmeijer B, Heemskerk M, et al. Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria. Apoptosis. 2007; 12:181-93. DOI: 10.1007/s10495-006-0526-6
8.     Disperati P, Suarez-Saiz F, Gronda M, Minden MD, Schimmer A. Silencing of Caspase 8 Expression in Leukemia Cells and Patient Samples. Blood. 2004; 104(11): 2050. DOI: 10.1182/blood.V104.11.2050.2050
9.     Mishra R, Emancipator SN, Kern T, Simonson MS. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int. 2005; 67(1): 82-93. DOI: 10.1111/j.1523-1755.2005.00058.x
10.  Morresi C, Cianfruglia L, Sartini D, Cecati M, Fumarola S, Emanuelli M, et al. Effect of high glucose-induced oxidative stress on paraoxonase 2 expression and activity in Caco-2 cells. Cells. 2019; 8(12): 1616. DOI: 10.3390/cells8121616
11.  Saengboonmee C, Seubwai W, Pairojkul C, Wongkham S. High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation. Sci Rep. 2016; 6(1): 18995. DOI: 10.1038/srep18995
12.  Fiorello ML, Treweeke AT, Macfarlane DP, Megson IL. The impact of glucose exposure on bioenergetics and function in a cultured endothelial cell model and the implications for cardiovascular health in diabetes. Sci Rep. 2020; 10(1): 1-12. DOI: 10.1038/s41598-020-76505-4
13.  Shahraki S, Bahraini F, Mesbahzadeh B, Sayadi M, Sajjadi SM. Glucose increases proliferation and chemoresistance in chronic myeloid leukemia via decreasing antioxidant Properties of ω-3 polyunsaturated fatty acids in the presence of Iron. Mol Biol Rep. 2023; 50(12): 10315-24. DOI: 10.1007/s11033-023-08891-7
14.  Moridi N, Najafzadeh M, Sayedi M, Sajjadi SM. Astaxanthin Co-treatment with Low Dose Methotrexate Increases the Cell Cycle Arrest and Ameliorates the Methotrexate-induced Inflammatory Response in NALM-6. Int J Mol Cell Med. 2024; 13(2): 133-46. DOI: 10.22088/IJMCM.BUMS.13.2.133
15.  Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017; 7(3): 339. DOI: 10.15171/apb.2017.041
16.  Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016; 41(3): 211-8. DOI: 10.1016/j.tibs.2015.12.001
17.  Wang Z, Phillips LS, Rohan TE, Ho GY, Shadyab AH, Bidulescu A, et al. Diabetes, metformin use and risk of non‐Hodgkin's lymphoma in postmenopausal women: A prospective cohort analysis in the Women's Health Initiative. Int J Cancer. 2023; 152(8): 1556-69. DOI: 10.1002/ijc.34376
18.  Zhao JZ, Lu YC, Wang YM, Xiao BL, Li HY, Lee SC, et al. Association between diabetes and acute lymphocytic leukemia, acute myeloid leukemia, non-Hopkin lymphoma, and multiple myeloma. International Journal of Diabetes in Developing Countries. 2021:1-9. DOI:10.1007/s13410-021-01021-8
19.  Ahmad I, Suhail M, Ahmad A, Alhosin M, Tabrez S. Interlinking of diabetes mellitus and cancer: An overview. Cell Biochem Funct. 2023. 41(5): 506-6. DOI: 10.1002/cbf.3802
20.  Erickson K, Patterson RE, Flatt SW, Natarajan L, Parker BA, Heath DD, et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J Clin Oncol. 2011;29(1):54. DOI: 10.1200/JCO.2010.29.3183
21.  Ma L, Zong X. Metabolic symbiosis in chemoresistance: refocusing the role of aerobic glycolysis. Front Oncol. 2020;10:5. DOI: 10.3389/fonc.2020.00005
22.  Biernacka K, Uzoh C, Zeng L, Persad R, Bahl A, Gillatt D, et al. Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr Relat Cancer. 2013; 20(5): 741-51. DOI: 10.1530/ERC-13-0077
23.  Gerards MC, van der Velden DL, Baars JW, Brandjes DP, Hoekstra JB, Vriesendorp TM, et al. Impact of hyperglycemia on the efficacy of chemotherapy—A systematic review of preclinical studies. Crit Rev Oncol Hematol. 2017; 113: 235-41. DOI: 10.1016/j.critrevonc.2017.03.007
24.  Kageyama S-i, Yokoo H, Tomita K, Kageyama-Yahara N, Uchimido R, Matsuda N, et al. High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors. Cardiovas Diabetol. 2011; 10: 1-11. DOI:10.1186/1475-2840-10-73
25.  Lam V, Findley HW, Reed JC, Freedman MH, Goldenberg GJ. Comparison of DR5 and Fas expression levels relative to the chemosensitivity of acute lymphoblastic leukemia cell lines. Leuk Res. 2002; 26(5): 503-13. DOI: 10.1016/s0145-2126(01)00162-x
26.  Ehrhardt H, Wachter F, Maurer M, Stahnke K, Jeremias I. Important role of caspase-8 for chemosensitivity of ALL cells. Clin Cancer Res. 2011; 17(24): 7605-13. DOI: 10.1158/1078-0432.ccr-11-0513
 
Type of Study: Original Article | Subject: Cellular and Molecular
Received: 2024/09/13 | Accepted: 2024/11/30 | ePublished ahead of print: 2024/12/3 | ePublished: 2024/12/5

References
1. Inaba H, Pui C-H. Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med. 2021;10(9):1926. DOI: 10.3390/jcm10091926 [DOI:10.3390/jcm10091926] [PMID] []
2. Ge Z, Song C, Ding Y, Tan B-H, Desai D, Sharma A, et al. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia. 2021; 35(5):1267-78. DOI: 10.1038/s41375-021-01132-5 [DOI:10.1038/s41375-021-01132-5] [PMID] []
3. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson J, Loscalzo J. Harrison's Principles of Internal Medicine: 18th ed. New York: McGraw Hill; 2015.
4. Torrente Castells E, Barbosa de Figueiredo RP, Berini Aytés L, Gay Escoda C. Clinical features of oral lichen planus. A retrospective study of 65 cases.Med Oral Patol Oral Cir Bucal. 2010; 15(5): e685-90. 2010. DOI: 10.4317/medoral.15.e685 [DOI:10.4317/medoral.15.e685] [PMID]
5. Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol. 2014; 22(1): 182-91. DOI: 10.1016/j.intimp.2014.06.033 [DOI:10.1016/j.intimp.2014.06.033] [PMID]
6. Nengroo MA, Maheshwari S, Singh A, Verma A, Arya RK, Chaturvedi P, et al. CXCR4 intracellular protein promotes drug resistance and tumorigenic potential by inversely regulating the expression of Death Receptor 5. Cell Death Dis. 2021; 12(5): 464. DOI: 10.1038/s41419-021-03730-8 [DOI:10.1038/s41419-021-03730-8] [PMID] []
7. De Vries J, Wammes L, Jedema I, Van Dreunen L, Nijmeijer B, Heemskerk M, et al. Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria. Apoptosis. 2007; 12:181-93. DOI: 10.1007/s10495-006-0526-6 [DOI:10.1007/s10495-006-0526-6] [PMID]
8. Disperati P, Suarez-Saiz F, Gronda M, Minden MD, Schimmer A. Silencing of Caspase 8 Expression in Leukemia Cells and Patient Samples. Blood. 2004; 104(11): 2050. DOI: 10.1182/blood.V104.11.2050.2050 [DOI:10.1182/blood.V104.11.2050.2050]
9. Mishra R, Emancipator SN, Kern T, Simonson MS. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int. 2005; 67(1): 82-93. DOI: 10.1111/j.1523-1755.2005.00058.x [DOI:10.1111/j.1523-1755.2005.00058.x] [PMID]
10. Morresi C, Cianfruglia L, Sartini D, Cecati M, Fumarola S, Emanuelli M, et al. Effect of high glucose-induced oxidative stress on paraoxonase 2 expression and activity in Caco-2 cells. Cells. 2019 [DOI:10.3390/cells8121616] [PMID] []
11. 8(12): 1616. DOI: 10.3390/cells8121616 [DOI:10.3390/cells8121616] [PMID] []
12. Saengboonmee C, Seubwai W, Pairojkul C, Wongkham S. High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation. Sci Rep. 2016; 6(1): 18995. DOI: 10.1038/srep18995 [DOI:10.1038/srep18995] [PMID] []
13. Fiorello ML, Treweeke AT, Macfarlane DP, Megson IL. The impact of glucose exposure on bioenergetics and function in a cultured endothelial cell model and the implications for cardiovascular health in diabetes. Sci Rep. 2020; 10(1): 1-12. DOI: 10.1038/s41598-020-76505-4 [DOI:10.1038/s41598-020-76505-4] [PMID] []
14. Shahraki S, Bahraini F, Mesbahzadeh B, Sayadi M, Sajjadi SM. Glucose increases proliferation and chemoresistance in chronic myeloid leukemia via decreasing antioxidant Properties of ω-3 polyunsaturated fatty acids in the presence of Iron. Mol Biol Rep. 2023; 50(12): 10315-24. DOI: 10.1007/s11033-023-08891-7 [DOI:10.1007/s11033-023-08891-7] [PMID]
15. Moridi N, Najafzadeh M, Sayedi M, Sajjadi SM. Astaxanthin Co-treatment with Low Dose Methotrexate Increases the Cell Cycle Arrest and Ameliorates the Methotrexate-induced Inflammatory Response in NALM-6. Int J Mol Cell Med. 2024; 13(2): 133-46. DOI: 10.22088/IJMCM.BUMS.13.2.133
16. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017; 7(3): 339. DOI: 10.15171/apb.2017.041 [DOI:10.15171/apb.2017.041] [PMID] []
17. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016; 41(3): 211-8. DOI: 10.1016/j.tibs.2015.12.001 [DOI:10.1016/j.tibs.2015.12.001] [PMID] []
18. Wang Z, Phillips LS, Rohan TE, Ho GY, Shadyab AH, Bidulescu A, et al. Diabetes, metformin use and risk of non‐Hodgkin's lymphoma in postmenopausal women: A prospective cohort analysis in the Women's Health Initiative. Int J Cancer. 2023; 152(8): 1556-69. DOI: 10.1002/ijc.34376 [DOI:10.1002/ijc.34376] [PMID]
19. Zhao JZ, Lu YC, Wang YM, Xiao BL, Li HY, Lee SC, et al. Association between diabetes and acute lymphocytic leukemia, acute myeloid leukemia, non-Hopkin lymphoma, and multiple myeloma. International Journal of Diabetes in Developing Countries. 2021:1-9. DOI:10.1007/s13410-021-01021-8 [DOI:10.1007/s13410-021-01021-8]
20. Ahmad I, Suhail M, Ahmad A, Alhosin M, Tabrez S. Interlinking of diabetes mellitus and cancer: An overview. Cell Biochem Funct. 2023. 41(5): 506-6. DOI: 10.1002/cbf.3802 [DOI:10.1002/cbf.3802] [PMID]
21. Erickson K, Patterson RE, Flatt SW, Natarajan L, Parker BA, Heath DD, et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J Clin Oncol. 2011;29(1):54. DOI: 10.1200/JCO.2010.29.3183 [DOI:10.1200/JCO.2010.29.3183] [PMID] []
22. Ma L, Zong X. Metabolic symbiosis in chemoresistance: refocusing the role of aerobic glycolysis. Front Oncol. 2020;10:5. DOI: 10.3389/fonc.2020.00005 [DOI:10.3389/fonc.2020.00005] [PMID] []
23. Biernacka K, Uzoh C, Zeng L, Persad R, Bahl A, Gillatt D, et al. Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocr Relat Cancer. 2013; 20(5): 741-51. DOI: 10.1530/ERC-13-0077 [DOI:10.1530/ERC-13-0077] [PMID]
24. Gerards MC, van der Velden DL, Baars JW, Brandjes DP, Hoekstra JB, Vriesendorp TM, et al. Impact of hyperglycemia on the efficacy of chemotherapy-A systematic review of preclinical studies. Crit Rev Oncol Hematol. 2017; 113: 235-41. DOI: 10.1016/j.critrevonc.2017.03.007 [DOI:10.1016/j.critrevonc.2017.03.007] [PMID]
25. Kageyama S-i, Yokoo H, Tomita K, Kageyama-Yahara N, Uchimido R, Matsuda N, et al. High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors. Cardiovas Diabetol. 2011; 10: 1-11. DOI:10.1186/1475-2840-10-73 [DOI:10.1186/1475-2840-10-73] [PMID] []
26. Lam V, Findley HW, Reed JC, Freedman MH, Goldenberg GJ. Comparison of DR5 and Fas expression levels relative to the chemosensitivity of acute lymphoblastic leukemia cell lines. Leuk Res. 2002; 26(5): 503-13. DOI: 10.1016/s0145-2126(01)00162-x [DOI:10.1016/S0145-2126(01)00162-X] [PMID]
27. Ehrhardt H, Wachter F, Maurer M, Stahnke K, Jeremias I. Important role of caspase-8 for chemosensitivity of ALL cells. Clin Cancer Res. 2011; 17(24): 7605-13. DOI: 10.1158/1078-0432.ccr-11-0513 [DOI:10.1158/1078-0432.CCR-11-0513] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb