Research code: 456576
Ethics code: IR.BUMS.REC.1400.284

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirmohammadi S T, Eghbali S, Mohammadparast-Tabas P, Yousefi M. Characterization and evaluation of the antibacterial activities of silver nanoparticle synthesized with Plantago lanceolata seed extract. Journal of Scientific Research in Medical Sciences. 2024; 31 (2) :127-139
URL: http://journal.bums.ac.ir/article-1-3394-en.html
1- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
2- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
3- Department of Medical Microbiology, School of Medicine, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran , Masoud.yousefi@bums.ac.ir
Abstract:   (334 Views)
Background and Aims: The increase in the incidence of antimicrobial resistance in pathogens has led researchers to identify new and effective antimicrobial agents. Green production of nanoparticles has received attention due to its compatibility with the environment and low cost. The present study sought to characterize and evaluate the antibacterial activities of silver nanoparticles synthesized with Plantago lanceolata seed extract.
Materials and Methods: In this study, after the synthesis of silver nanoparticles by chemical and green methods, the characteristics of silver nanoparticles synthesized with the P. lanceolata seed extract were evaluated by UV-Vis, DLS, XRD, FT-IR, and TEM methods. Thereafter, the optimal conditions for the synthesis of nanoparticles and the antibacterial activity of the P. lanceolata extract, chemical silver nanoparticles, and green silver nanoparticles against standard bacterial strains were investigated by determining the minimum inhibitory concentration (MIC) using the broth microdilution method.
Results: Based on the absorption spectrum of green silver nanoparticles with UV-Vis, the optimal concentration of silver nitrate was 20 mM, the suitable synthesis temperature was 57 °C, and the best reaction time was reported as 30 sec. The results of XRD, FT-IR, and TEM analyses confirmed the synthesis of green silver nanoparticles with oval and spherical morphology with a size of 20-40 nm. The P. lanceolata extract and chemical silver nanoparticles had no significant antibacterial effect. Nonetheless, green silver nanoparticles had significant antibacterial activity on the studied bacteria, with the highest antibacterial effect against Staphylococcus aureus and Enterococcus faecalis (MIC=125 μg/mL).
Conclusion: As evidenced by the obtained results, P. lanceolata seed extract significantly increased the antibacterial activity of silver nanoparticles. This research demonstrated the potential of environmentally friendly silver nanoparticles synthesized in the presence of P. lanceolata extract with significant antibacterial effects for various biomedical applications.
Full-Text [PDF 872 kb]   (169 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2024/03/1 | Accepted: 2024/05/20 | ePublished ahead of print: 2024/07/2 | ePublished: 2024/08/5

References
1. Levy SB. Antibiotic resistance: consequences of inaction. Clin Infect Dis. 2001; 33(3): S124-S9. DOI: 10.1086/321837 [DOI:10.1086/321837]
2. Tagliabue A, Rappuoli R. Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol. 2018; 9: 1068. DOI: 10.3389/fimmu.2018.01068 [DOI:10.3389/fimmu.2018.01068]
3. Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb Drug Resist. 2019; 25(6): 890-908. DOI :10.1089/mdr.2018.0319 [DOI:10.1089/mdr.2018.0319]
4. Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 2016; 11(1): 40.. DOI: 10.1186/s11671-016-1257-4 [DOI:10.1186/s11671-016-1257-4]
5. Ho D, Wang C-HK, Chow EK-H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci Adv. 2015; 1(7): e1500439. DOI: 10.1126/sciadv.1500439 [DOI:10.1126/sciadv.1500439]
6. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022; 26(1): 102336. DOI: 10.1016/j.eti.2022.102336 [DOI:10.1016/j.eti.2022.102336]
7. Osman AI, Zhang Y, Farghali M, Rashwan AK, Eltaweil AS, El-Monaem A, et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ Chem Lett. 2024: 1-47. DOI: 10.1007/s10311-023-01682-3 [DOI:10.1007/s10311-023-01682-3]
8. Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agro. Sustai. Dev. 2008; 28: 33-46. DOI: 10.1007/978-90-481-2666-8_28 [DOI:10.1007/978-90-481-2666-8_28]
9. Mohammadi T, Pirani A, Vaezi J, Moazzeni H. A contribution to ethnobotany and review of phytochemistry and biological activities of the Iranian local endemic species Sclerorhachis leptoclada Rech. f. Ethnobot Res Appl. 2020; 20: 1-18. DOI: 10.32859/era.20.45.1-18 [DOI:10.32859/era.20.45.1-18]
10. Keivani M, Mehregan I, Albach DC. Genetic diversity and population structure of Plantago major (Plantaginaceae) in Iran. Iran J Bot. 2020; 26(2): 111-24. DOI: 10.22092/ijb.2020.343166.1287
11. Bahadori MB, Sarikurkcu C, Kocak MS, Calapoglu M, Uren MC, Ceylan O. Plantago lanceolata as a source of health-beneficial phytochemicals: Phenolics profile and antioxidant capacity. Food Biosci. 2020; 34: 100536. DOI: 10.1016/j.fbio.2020.100536 [DOI:10.1016/j.fbio.2020.100536]
12. Wayne PA. CLSI (Clinical and Labboratory Standards Institute): Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M10. 2020.
13. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017: 1227-49. DOI: 10.2147/IJN.S121956 [DOI:10.2147/IJN.S121956]
14. Hesarinejad MA, Shekarforoush E, Attar FR, Ghaderi S. The dependency of rheological properties of Plantago lanceolata seed mucilage as a novel source of hydrocolloid on mono-and di-valent salts. Int J Biol Macromol. 2020; 147: 1278-84. DOI: 10.1016/j.ijbiomac.2019.10.093 [DOI:10.1016/j.ijbiomac.2019.10.093]
15. Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A: Physicochem. Eng. Asp. 2010; 369(1-3): 27-33. DOI: 10.1016/j.colsurfa.2010.07.020 [DOI:10.1016/j.colsurfa.2010.07.020]
16. Mock J, Barbic M, Smith D, Schultz D, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002; 116(15): 6755-9. DOI: 10.1063/1.1462610 [DOI:10.1063/1.1462610]
17. Kumar KP, Paul W, Sharma CP. Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 2011; 46(10): 2007-13. DOI: 10.1016/j.procbio.2011.07.011 [DOI:10.1016/j.procbio.2011.07.011]
18. Liaqat N, Jahan N, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem. 2022; 10: 952006. DOI: 10.3389/fchem.2022.952006 [DOI:10.3389/fchem.2022.952006]
19. Jiang X, Chen W, Chen C, Xiong S, Yu A. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett. 2011; 6(1): 32. DOI: 10.1007/s11671-010-9780-1 [DOI:10.1007/s11671-010-9780-1]
20. Shah MZ, Guan Z-H, Din AU, Ali A, Rehman AU, Jan K, et al. Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Sci Rep. 2021; 11(1): 20754. DOI: 10.1038/s41598-021-00296-5 [DOI:10.1038/s41598-021-00296-5]
21. Singla S, Jana A, Thakur R, Kumari C, Goyal S, Pradhan J. Green synthesis of silver nanoparticles using Oxalis griffithii extract and assessing their antimicrobial activity. OpenNano. 2022; 7: 100047. DOI: 10.1016/j.onano.2022.100047 [DOI:10.1016/j.onano.2022.100047]
22. Mortazavi-Derazkola S, Ebrahimzadeh MA, Amiri O, Goli HR, Rafiei A, Kardan M, et al. Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@ Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J Alloys Compd. 2020; 820: 153186. DOI: 10.1016/j.jallcom.2019.153186 [DOI:10.1016/j.jallcom.2019.153186]
23. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13(10): 2638-50. DOI: 10.1039/C1GC15386B [DOI:10.1039/c1gc15386b]
24. Patil MP, Kim G-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017; 101(1): 79-92. DOI: 10.1007/s00253-016-8012-8 [DOI:10.1007/s00253-016-8012-8]
25. Es-Haghi A, Taghavizadeh Yazdi ME, Sharifalhoseini M, Baghani M, Yousefi E, Rahdar A, et al. Application of response surface methodology for optimizing the therapeutic activity of ZnO nanoparticles biosynthesized from Aspergillus niger. Biomimetics. 2021; 6(2): 34. DOI: 10.3390/biomimetics6020034 [DOI:10.3390/biomimetics6020034]
26. Zare-Bidaki M, Aramjoo H, Mizwari ZM, Mohammadparast-Tabas P, Javanshir R, Mortazavi-Derazkola S. Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. Arab J Chem. 2022; 15(3): 103842. DOI: 10.1016/j.arabjc.2022.103842 [DOI:10.1016/j.arabjc.2022.103842]
27. Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2014; 7(6): 1131-9. DOI: 10.1016/j.arabjc.2013.04.007 [DOI:10.1016/j.arabjc.2013.04.007]
28. Deljou A, Goudarzi S. Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran J Biotechnol. 2016; 14(2): 25-32. DOI: 10.15171/ijb.1259 [DOI:10.15171/ijb.1259]
29. Nikaeen G, Yousefinejad S, Rahmdel S, Samari F, Mahdavinia S. Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Sci Rep. 2020; 10(1): 9642. DOI: 10.1038/s41598-020-66357-3 [DOI:10.1038/s41598-020-66357-3]
30. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016; 7: 1831. DOI: 10.3389/fmicb.2016.01831 [DOI:10.3389/fmicb.2016.01831]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Scientific Research in Medical Sciences

Designed & Developed by : Yektaweb