1. Moodi M, Tavakoli T, Tahergorabi Z. Crossroad between obesity and gastrointestinal cancers: A review of molecular mechanisms and interventions. Int J Prev Med. 2021; 24; 12: 18. DOI: 10.4103/ijpvm.IJPVM_266_20 [
DOI:10.4103/ijpvm.IJPVM_266_20]
2. Tahergorabi Z, Khazaei M, Moodi M, Chamani E. From obesity to cancer: a review on proposed mechanisms. Vol. 34, Cell Biochemistry and Function. Cell Biochem Funct. 2016; 34(8): 533-45. DOI: 10.1002/cbf.3229 [
DOI:10.1002/cbf.3229]
3. Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Archives of Physiology and Biochemistry. Arch Physiol Biochem. 2024; 130(2): 155-68. DOI: 10.1080/13813455.2021.1988110 [
DOI:10.1080/13813455.2021.1988110]
4. Lumanlan JC, Fernando WMADB, Jayasena V. Mechanisms of oil uptake during deep frying and applications of predrying and hydrocolloids in reducing fat content of chips. Int J Food Sci Technol. 2020; 55(4): 1661-70. DOI: 10.1111/ijfs.14435 [
DOI:10.1111/ijfs.14435]
5. Shokrollahi Yancheshmeh B, Mohebbi M, Varidi M, Razavi SM, Ansarifar E. Effects of Temperature, Frying time and Lentil Flour Addition to the batter formulation on quality of simulated fried crust by using a Deep-Fried Model System (DFCM). Iranian Food Science and Technology Research Journal. 2014; 10; 3(1): 266-75. [Persian] URL: https://ifstrj.um.ac.ir/article_33993.html?lang=en
6. Liberty JT, Dehghannya J, Ngadi MO. Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends Food Sc Technol. 2019; 92(2): 172-83. DOI: 10.1016/j.tifs.2019.07.050 [
DOI:10.1016/j.tifs.2019.07.050]
7. Ananey-Obiri D, Matthews L, Azahrani MH, Ibrahim SA, Galanakis CM, Tahergorabi R. Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends Food Sc Technol. 2018; 80: 167-74. DOI: 10.1016/j.tifs.2018.08.012 [
DOI:10.1016/j.tifs.2018.08.012]
8. Jia B, Fan D, Yu L, Li J, Duan Z, Fan L. Oil Absorption of Potato Slices Pre-Dried by Three Kinds of Methods. Eur J Lipid Sci Technol. 2018; 120(6). DOI: [
DOI:10.1002/ejlt.201700382]
9. Azahrani MH, Ananey-Obiri D, Matthews L, Tahergorabi R. Development of low-fat fried fish using a two-prong strategy. CYTA - J Food Sci. 2019; 17(1): 882-91. DOI: 10.1080/19476337.2019.1661878 [
DOI:10.1080/19476337.2019.1661878]
10. Ansarifar E, Mohebbi M, Shahid F. Studying Some Physicochemical Characteristics of Crust Coated with White Egg and Chitosan Using a Deep-Fried Model System. Food Nutr Sci. 2012; 03(5): 685-92. DOI: 10.4236/fns.2012.35093 [
DOI:10.4236/fns.2012.35093]
11. Pankaj SK, Keener KM. A review and research trends in alternate frying technologies. Curr Opin Food Sci. 2017; 16: 74-9. DOI: 10.1016/j.cofs.2017.09.001 [
DOI:10.1016/j.cofs.2017.09.001]
12. Adrah K, Adegoke SC, Tahergorabi R. Physicochemical and microbial quality of coated raw and oleogel-fried chicken. LWT. 2022; 154: 112589. DOI: 10.1016/j.lwt.2021.112589 [
DOI:10.1016/j.lwt.2021.112589]
13. Ansarifar E, Shahidi F, Mohebbi M, Razavi SM, Ansarifar J. A new technique to evaluate the effect of chitosan on properties of deep-fried Kurdish cheese nuggets by TOPSIS. LWT. 2015; 62(2): 1211-9. DOI: 10.1016/j.lwt.2015.01.051 [
DOI:10.1016/j.lwt.2015.01.051]
14. Oke EK, Idowu MA, Sobukola OP, Adeyeye SAO, Akinsola AO. Frying of Food: A Critical Review. J Culin Sci Technol. 2018; 16(2): 107-27. DOI: 10.1080/15428052.2017.1333936 [
DOI:10.1080/15428052.2017.1333936]
15. Al-Asmar A, Naviglio D, Giosafatto CVL, Mariniello L. Hydrocolloid-based coatings are effective at reducing acrylamide and oil content of French fries. Coatings. 2018; 8(4): 147. DOI:10.3390/coatings8040147 [
DOI:10.3390/coatings8040147]
16. Tahergurabi Z, Khazaei M, Obesity and Angiogenesis. J Isfahan Med Sch. 2012; 29, 172, 2899-294. URL: https://jims.mui.ac.ir/article_13691.html?lang=en
17. Zhang X, Zhang M, Adhikari B. Recent developments in frying technologies applied to fresh foods. Vol. 98, Trends in Food Science and Technology. Elsevier Ltd; 2020; 98: 68-81. DOI: 10.1016/j.tifs.2020.02.007 [
DOI:10.1016/j.tifs.2020.02.007]
18. Sahasrabudhe SN, Staton JA, Farkas BE. Effect of frying oil degradation on surface tension and wettability. LWT. 2019; 99: 519-24. DOI: 10.1016/j.lwt.2018.10.026 [
DOI:10.1016/j.lwt.2018.10.026]
19. Shokrollahi Yancheshmeh B, Mohebbi M, Varidi M, Razavi SM, Ansarifar E. Performance of lentil and chickpea flour in deep-fried crust model (DFCM): oil barrier and crispy properties. J Food Me:as char:act. 2019; 13(1): 296-304. DOI: 10.1007/s11694-018-9944-8 [
DOI:10.1007/s11694-018-9944-8]
20. Ansarifar E, Mohebbi M, Shahid F. Varidi M. Kinetic modeling of mass transfer during deep frying of coated Kurdish cheese nuggets with white egg. Iranian Food Science and Technology Research Journal. 2013; 9(2): 126-37. [Persian] URL: https://ifstrj.um.ac.ir/article_32589.html
21. Bingol G, Wang B, Zhang A, Pan Z, McHugh TH. Comparison of water and infrared blanching methods for processing performance and final product quality of French fries. J Food Eng. 2014; 121(1): 135-42. DOI: 10.1016/j.jfoodeng.2013.08.001 [
DOI:10.1016/j.jfoodeng.2013.08.001]
22. Arisseto AP, Silva WC, Marcolino PFC, Scaranelo GR, Berbari SAG, de Oliveira Miguel AMR, et al. Influence of potato cultivar, frying oil and sample pre-treatments on the contamination of French fries by 3-monochloropropane-1,2-diol fatty acid esters. Food Res Int. 2019; 124: 43-8. DOI: 10.1016/j.foodres.2018.10.070 [
DOI:10.1016/j.foodres.2018.10.070]
23. Ngobese NZ, Workneh TS. Potato (Solanum tuberosum L.) nutritional changes associated with French fry processing: Comparison of low-temperature long-time and high-temperature short-time blanching and frying treatments. LWT. 2018; 97: 448-55. DOI: 10.1016/j.lwt.2018.07.039 [
DOI:10.1016/j.lwt.2018.07.039]
24. García-Segovia P, Urbano-Ramos AM, Fiszman S, Martínez-Monzó J. Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Sci Technol. 2016; 69: 515-21. DOI: 10.1016/j.lwt.2016.02.014 [
DOI:10.1016/j.lwt.2016.02.014]
25. Azadgar A, Asefi N. The impact of ultrasound and blanching technology on effective diffusivity and uptake of oil in zucchini during deep fat frying. J Food Sci Technol. 2021; 18(111): 371- 82. [Persian]. DOI: 10.52547/fsct.18.111.371 [
DOI:10.52547/fsct.18.111.371]
26. Mohammadalinejhad M, Dehghannya J, Jalali SH. Effect of Combined Frequencies and Applied Time of Ultrasound Pretreatment on Oil Uptake during Frying of Potato Strips. Iranian Journal of Biosystem Engineering. 2018; 49(1): 35-47. [Persian] DOI: 10.22059/IJBSE.2017.234629.664957 [
DOI:10.1016/j.ifset.2018.05.001]
27. Razzagh Pour E, Dehghannya J, Ghanbarzadeh B. The effect of ultrasound and blanching on oil uptake during deep-fat frying of potato.Res Innov Food Sci Technol. 2014; 2(4): [Persian] DOI: 10.22101/JRIFST.2014.03.01.243
28. Zhang Y, Kahl DHW, Bizimungu B, Lu ZX. Effects of blanching treatments on acrylamide, asparagine, reducing sugars and colour in potato chips. J Food Sci Technol. 2018; 55(10): 4028-41. DOI: 10.1007/s13197-018-3329-1 [
DOI:10.1007/s13197-018-3329-1]
29. Mestdagh F, De Wilde T, Fraselle S, Govaert Y, Ooghe W, Degroodt JM, et al. Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT. 2008; 41(9): 1648-54. DOI: 10.1016/j.lwt.2007.10.007 [
DOI:10.1016/j.lwt.2007.10.007]
30. Pedreschi F, Mariotti S, Granby K, Risum J. Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT. 2011; 44(6): 1473-6. DOI: 10.1016/j.lwt.2011.02.004 [
DOI:10.1016/j.lwt.2011.02.004]
31. Liu C, Lv M, Du H, Deng H, Zhou L, Li P, Li X, Li B. Effect of Preliminary Treatment by Pulsed Electric Fields and Blanching on the Quality of Fried Sweet Potato Chips. Foods. 2023; 12(11): 2147. DOI: 10.3390/foods12112147 [
DOI:10.3390/foods12112147]
32. Penjumras P, Kunkrathok S, Umnat S, Chokeprasert P, Pokkaew R, Wattananapakasem I, et al. Effect of Blanching Time and Par-Frying Temperature on Quality of Frozen Par-Fried Taro. In: Chen, SM. (eds) Springer Proceedings in Materials Proceedings of 10th International Conference on Chemical Science and Engineering. ICCSE 2021. Singapore: Springer Nature Singapore. 2022; Nov 19 (pp. 49-55). DOI: 10.1007/978-981-19-4290-7_6 [
DOI:10.1007/978-981-19-4290-7_6]
33. Sobukola OP, Awonorin SO, Sanni LO, Bamiro FO. Optimization of Blanching Conditions Prior to Deep Fat Frying of Yam Slices. Int J Food Prop. 2008; 11(2): 379-91. DOI: https: 10.1080/10942910701409294 [
DOI:10.1080/10942910701409294]
34. Suyatma, N E, Ulfah, K, Prangdimurti, E, Ishikawa, Y. Effect of blanching and pectin coating as pre-frying treatments to reduce acrylamide formation in banana chips. Int Food Res J. 2015; 22, (3), 936-42. URL: http://www.ifrj.upm.edu.my/22%20(03)%202015/(9).pdf
35. Schiffmann R. Microwave-assisted frying. In: The Microwave Processing of Foods: Second Edition. Elsevier Inc.;2017. p. 142-51. eBook ISBN: 9780081005316 URL: https://shop.elsevier.com/books/the-microwave-processing-of-foods/regier/978-0-08-100528-6 [
DOI:10.1016/B978-0-08-100528-6.00007-3]
36. Sensoy I, Sahin S, Sumnu G. Microwave Frying Compared with Conventional Frying via Numerical Simulation. Food Bioproc Tech. 2013; 6(6): 1414-9. DOI: 10.1007/s11947-012-0805-x [
DOI:10.1007/s11947-012-0805-x]
37. Parikh A, Takhar PS. Comparison of Microwave and Conventional Frying on Quality Attributes and Fat Content of Potatoes. J Food Sci. 2016; 81(11): E2743-55. DOI: 10.1111/1750-3841.13498 [
DOI:10.1111/1750-3841.13498]
38. Ngadi MO, Wang Y, Adedeji AA, Raghavan GSV. Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT. 2009; 42(1): 438-40. DOI: 10.1016/j.lwt.2008.06.006 [
DOI:10.1016/j.lwt.2008.06.006]
39. Adedeji AA, Ngadi MO, Raghavan GSV. Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. J Food Eng. 2009; 91(1): 146-53. DOI: 10.1016/j.jfoodeng.2008.08.018 [
DOI:10.1016/j.jfoodeng.2008.08.018]
40. Amiryousefi MR, Mohebbi M, Khodaiyan F. Kinetics of Mass Transfer in Microwave Precooked and Deep-Fat Fried Ostrich Meat Plates. Food Bioproc Tech. 2012; 5(3): 939-46. DOI: 10.1007/s11947-010-0373-x [
DOI:10.1007/s11947-010-0373-x]
41. Omidiran A T, Odukoya O J, Akinbule O O, Sobukola O P. Effect of microwave-assisted pre-drying and deep-fat-frying conditions on some quality attributes of orange fleshed sweetpotato chips. Food Chemistry Advances. 2023; 3; 100534. DOI: 10.1016/j.focha.2023.100534 [
DOI:10.1016/j.focha.2023.100534]
42. Noor Hidayati, R., Nurul Najihah, I. Norazatul Hanim, M.R. Comparison of conventional frying and microwave frying of beef patty: effect on oil absorption, texture, physical and chemical properties. Food Res. 2021; 5(3); 399-405. DOI: 10.26656/fr.2017.5(3).640 [
DOI:10.26656/fr.2017.5(3).640]
43. Matori, F. Mehrnia,M. A. Jooyandeh, H. Hojjati, M. Effects of microwave pretreatment on qualitative characteristics of French fries during deep fat frying. Iranian J Nutr Sci Food Technol. 2023; 18 (2) :75-88. [Persian] URL: http://nsft.sbmu.ac.ir/article-1-3621-en.html
44. Xu Zhou a, Shuang Zhang a, Zhongwei Tang a, Juming Tang a, Pawan S. Takhar b. Microwave frying and post-frying of French fries. Food Res Int. 2022; 159: 111663. DOI: 10.1016/j.foodres.2022.111663 [
DOI:10.1016/j.foodres.2022.111663]
45. Zhang J, Xie T, Fan L. Improving the quality and reducing oil absorption of fried potato chips by ultrasound pretreatment. LWT. 2021; 148(10): 111763. DOI: 10.1016/j.lwt.2021.111763 [
DOI:10.1016/j.lwt.2021.111763]
46. Su Y, Zhang M, Adhikari B, Mujumdar AS, Zhang W. Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innov Food Sci Emerg Technol. 2018; 50: 148-59. DOI: 10.1016/j.ifset.2018.10.011 [
DOI:10.1016/j.ifset.2018.10.011]
47. Qiu L, Zhang M, Wang Y, Bhandari B. Effects of ultrasound pretreatments on the quality of fried sweet potato (Ipomea batatas) chips during microwave-assisted vacuum frying. J Food Process Eng. 2018; 41(8): e12879. DOI: 10.1111/jfpe.12879 [
DOI:10.1111/jfpe.12879]
48. Oladejo AO, Ma H, Qu W, Zhou C, Wu B, Yang X, et al. Effects of ultrasound pretreatments on the kinetics of moisture loss and oil uptake during deep fat frying of sweet potato (Ipomea batatas). Innov Food Sci Emerg Technol. 2017; 43: 7-17. DOI: 10.1016/j.ifset.2017.07.019 [
DOI:10.1016/j.ifset.2017.07.019]
49. Dehghannya J, Naghavi EA, Ghanbarzadeh B. Frying of Potato Strips Pretreated by Ultrasound-Assisted Air-Drying. J Food Process Preserv. 2016; 40(4): 583-92. DOI: 10.1111/jfpp.12636 [
DOI:10.1111/jfpp.12636]
50. Zhang J, Yu P, Fan L, Sun Y. Effects of ultrasound treatment on the starch properties and oil absorption of potato chips. Ultrason Sonochem. 2021; 70: 105347. DOI: 10.1016/j.ultsonch.2020.105347 [
DOI:10.1016/j.ultsonch.2020.105347]
51. Dehghannya J, Abedpour L. Influence of a three stage hybrid ultrasound-osmotic-frying process on production of low-fat fried potato strips. J Sci Food Agric. 2018; 98(4): 1485-91. DOI: 10.1002/jsfa.8617 [
DOI:10.1002/jsfa.8617]
52. Mohammadalinejhad S, Dehghannya J. Effects of ultrasound frequency and application time prior to deep-fat frying on quality aspects of fried potato strips. Innov Food Sci Emerg Technol. 2018; 47: 493-503. DOI: 10.1016/j.ifset.2018.05.001 [
DOI:10.1016/j.ifset.2018.05.001]
53. Oloruntoba D, Ampofo J, Ngadi M. Effect of ultrasound pretreated hydrocolloid batters on quality attributes of fried chicken nuggets during post-fry holding. Ultrason Sonochem. 2022; 91: 106237. DOI: 10.1016/j.ultsonch.2022.106237 [
DOI:10.1016/j.ultsonch.2022.106237]