Volume 31, Issue 1 (May 2024)                   JBUMS 2024, 31(1): 79-90 | Back to browse issues page

Research code: IR.TUMS.REC.1394.475
Ethics code: IR.TUMS.REC.1394.475


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Edalati M, Alizadeh S, Abdoli A, Karam F, Shekarchi A, Sayadi M. Upregulation of miR-155 induces cell cycle arrest and apoptosis in chronic myeloid leukemia. JBUMS 2024; 31 (1) :79-90
URL: http://journal.bums.ac.ir/article-1-3347-en.html
1- Department of Hematology and Blood Bank, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
2- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
3- Department of Hematology and Blood Bank, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
4- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
5- Department of Hematology and Blood Bank, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran , sayadi.mahtab@yahoo.com
Abstract:   (270 Views)
Background and Aims: According to the increasing evidence, abnormal expression of microRNAs is associated with tumorigenesis, tumor spread, and relapse in leukemias, including chronic myeloid leukemia (CML). The present study aimed to investigate the effect of miR-155 overexpression in K562 cells on cell cycle arrest and apoptosis induction.
Materials and Methods: The pLenti-III-pre miR-155-GFP vector was used to increase miR-155 expression in the K562 cell line through nucleofection compared to the pLenti-III-Backbone-GFP vector as a control group (Backbone). The flow cytometry method was employed to confirm the expression of the vector containing miR-155 in damaged cells. After transfection, the expression levels of miR-155, BAX, BCL2, CASP3, and TP53 were measured by the RT-qPCR method. The propidium iodide (PI) dye was used to study the cell cycle, and the stained cells were read by flow cytometry. The statistical significance was also defined as a P-value less than 0.05.
Results: After confirming the increase in miR-155 expression when cells transfected with miR-155 were compared with cells transfected with Backbone, cell cycle arrest was observed in the miR-155 group. In the cells with increased expression of miR-155, the change in G0/S and G1/S ratios compared to Backbone was shown to be 7.5 and 4.5, respectively (P<0.05). Moreover, 48 hours after transfection and in the group expressing miR-155, the expression of TP53, BAX, and CASP3 genes increased, and the expression of BCL2 decreased (P<0.05).
Conclusion: The increase in the level of miR-155 caused cell cycle arrest and increased pro-apoptotic gene expression, which indicates that miR-155 inhibits tumor growth in CML.
Full-Text [PDF 605 kb]   (132 Downloads)    
Type of Study: Original Article | Subject: Hematology
Received: 2023/10/31 | Accepted: 2024/04/7 | ePublished ahead of print: 2024/05/18 | ePublished: 2024/06/4

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394-424. DOI: 10.3322/caac.21492 [DOI:10.3322/caac.21492] [PMID]
2. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol. 2020; 95(6): 691-709. DOI: 10.1002/ajh.25792 [DOI:10.1002/ajh.25792] [PMID]
3. Frazer R, Irvine AE, McMullin MF. Chronic myeloid leukaemia in the 21st century. Ulster Med J. 2007; 76(1): 8-17. PMID: 17288299 PMCID: PMC1940291
4. Masaki, S., et al., Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun. 2007; 364(3): 509-14. DOI: 10.1016/j.bbrc.2007.10.077. [DOI:10.1016/j.bbrc.2007.10.077] [PMID]
5. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018; 93(3): 442-59. DOI: 10.1002/ajh.25011 [DOI:10.1002/ajh.25011] [PMID]
6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-97. DOI: 10.1016/s0092-8674(04)00045-5 [DOI:10.1016/S0092-8674(04)00045-5] [PMID]
7. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004; 303(5654): 83-6. DOI: 10.1126/science.1091903 [DOI:10.1126/science.1091903] [PMID]
8. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000; 96(10): 3343-56. . PMID: 11071626 [DOI:10.1182/blood.V96.10.3343] [PMID]
9. Hershkovitz Rokah O, Granot G, Ovcharenko A, Modai S, Pasmanik-Chor M, Toren A, et al. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One. 2012; 7(4): e35501. DOI: 10.1371/journal.pone.0035501 [DOI:10.1371/journal.pone.0035501] [PMID] []
10. Georgantas III RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A. 2007; 104(8): 2750-5. DOI: 10.1073/pnas.0610983104 [DOI:10.1073/pnas.0610983104] [PMID] []
11. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boqué C, et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016; 34(20): 2333-40. DOI: 10.1200/JCO.2015.64.8899 [DOI:10.1200/JCO.2015.64.8899] [PMID] []
12. Nakamae H, Fukuda T, Nakaseko C, Kanda Y, Ohmine K, Ono T, et al. Nilotinib vs. imatinib in Japanese patients with newly diagnosed chronic myeloid leukemia in chronic phase: long-term follow-up of the Japanese subgroup of the randomized ENESTnd trial. Int J Hematol. 2018; 107(3): 327-36. DOI: 10.1007/s12185-021-03216-5 [DOI:10.1007/s12185-021-03216-5] [PMID]
13. Nair AP, Barnett MJ, Broady RC, Hogge DE, Song KW, Toze CL, et al. Allogeneic Hematopoietic Stem Cell Transplantation Is an Effective Salvage Therapy for Patients with Chronic Myeloid Leukemia Presenting with Advanced Disease or Failing Treatment with Tyrosine Kinase Inhibitors. Biol Blood Marrow Transplant. 2015; 21(8): 1437-44. DOI: 10.1016/j.bbmt.2015.04.005 [DOI:10.1016/j.bbmt.2015.04.005] [PMID]
14. Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther. 2021; 12(1): 603. DOI: 10.1186/s13287-021-02659-1 [DOI:10.1186/s13287-021-02659-1] [PMID] []
15. Niederwieser C, Kröger N. Transplantation in CML in the TKI era: who, when, and how? Hematology Am Soc Hematol Educ Program. Hematology Am Soc Hematol Educ Program. 2022; 2022(1): 114-22. DOI: 10.1182/hematology.2022000329 [DOI:10.1182/hematology.2022000329] [PMID] []
16. Gupta A, Khattry N, Current status of hematopoietic stem cell transplant in chronic myeloid leukemia. Indian J Med Paediatr Oncol. 2014; 35(3): 207-210. DOI: 10.4103/0971-5851.142036 [DOI:10.4103/0971-5851.142036] [PMID] []
17. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006; 6(11): 857-66. DOI: 10.1038/nrc1997 [DOI:10.1038/nrc1997] [PMID]
18. Li S, Chen T, Zhong Z, Wang Y, Li Y, Zhao X. microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol Med Rep. 2012; 5(4): 949-954. DOI: 10.3892/mmr.2012.779 [DOI:10.3892/mmr.2012.779] [PMID] []
19. Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V, et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia. Mol Cancer. 2014; 13: 79. DOI: 10.1186/1476-4598-13-79. [DOI:10.1186/1476-4598-13-79] [PMID] []
20. Di Bacco A, Keeshan K, McKenna SL, Cotter TG. Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist. 2000; 5(5): 405-15. DOI: 10.1634/theoncologist.5-5-405 [DOI:10.1634/theoncologist.5-5-405] [PMID]
21. Casalini P, Iorio MV, Berno V, Bergamaschi A, Dale AL, Gasparini P, et al. Relationship between p53 and p27 expression following HER2 signaling. Breast. 2007; 16(6): 597-605. DOI: 10.1016/j.breast.2007.05.007 [DOI:10.1016/j.breast.2007.05.007] [PMID]
22. Gil‐Perotin S, Haines JD, Kaur J, Marin‐Husstege M, Spinetta MJ, Kim KH, et al. Roles of p53 and p27(Kip1) in the regulation of neurogenesis in the murine adult subventricular zone. Eur J Neurosci. 2011; 34(7): 1040-52. DOI: 10.1111/j.1460-9568.2011.07836.x [DOI:10.1111/j.1460-9568.2011.07836.x] [PMID] []
23. Morotti A, Carrà G, Crivellaro S. The p53 orbit in chronic myeloid leukemia: time to move to patient care. Transl. Cancer Res.2016: 5(Suppl 6). S1288-S1291. URL: https://tcr.amegroups.org/article/view/10759/html [DOI:10.21037/tcr.2016.11.69]
24. Weng C, Li Y, Xu D, Shi Y, Tang H. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem. 2005; 280(11): 10491-500. DOI: 10.1074/jbc.M412819200 [DOI:10.1074/jbc.M412819200] [PMID]
25. Fathabad ME, Karimipoor M, Alizadeh S, Abdoli A, Atashi A, Sayadi M. miR-155 effectively induces apoptosis in K562 Philadelphia positive cell line through upregulation of p27kip1. Bioimpacts. 2017; 7(2): 109-14. DOI: 10.15171/bi.2017.14 [DOI:10.15171/bi.2017.14] [PMID] []
26. Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993; 74(4): 609-19. DOI: 10.1016/0092-8674(93)90509-o [DOI:10.1016/0092-8674(93)90509-O] [PMID]
27. Sun XH, Song MF, Song HD, Wang YW, Luo MJ, Yin LM. miR‑155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol Med Rep. 2019; 19(4): 2627-35. DOI: 10.3892/mmr.2019.9917 [DOI:10.3892/mmr.2019.9917]
28. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, et al. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res. 2008; 68(24): 10105-12. DOI: 10.1158/0008-5472.CAN-08-1846 [DOI:10.1158/0008-5472.CAN-08-1846] [PMID]
29. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001; 20(15): 1803-1815. DOI: 10.1038/sj.onc.1204252 [DOI:10.1038/sj.onc.1204252] [PMID]
30. Schwartz D, Almog N, Peled A, Goldfinger N, Rotter V. Role of wild type p53 in the G2 phase: regulation of the gamma-irradiation-induced delay and DNA repair. Oncogene, 1997; 15(21): 2597-607. DOI: 10.1038/sj.onc.1201436 [DOI:10.1038/sj.onc.1201436] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Birjand University of Medical Sciences

Designed & Developed by : Yektaweb