Volume 30, Issue 4 (Januray 2024)                   JBUMS 2024, 30(4): 316-332 | Back to browse issues page

Research code: 0
Ethics code: IR.UMZ.REC.1401.068


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Firouzjaei Y, Hajizadeh Moghaddam A, Khanjani Jolodar S, Sohabatzadeh F. The application of cold atmospheric plasma technology in the brain: The potential role of reactive species in neuroprotection effects of plasma. JBUMS 2024; 30 (4) :316-332
URL: http://journal.bums.ac.ir/article-1-3342-en.html
1- MSc Student, Department of Animal Biology, Faculty of Basic Sciences, Mazandaran University, Babolsar, Mazandaran, Iran
2- Department of Animal Biology, Faculty of Basic Sciences, Mazandaran University, Babolsar, Mazandaran, Iran , a.hajizadeh@umz.ac.ir
3- Department of Animal Biology, Faculty of Basic Sciences, Mazandaran University, Babolsar, Mazandaran, Iran
4- Department of Physics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Mazandaran, Iran
Abstract:   (500 Views)
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play crucial roles as signaling molecules in neurophysiology. While high levels of ROS and RNS can lead to neuronal damage, their low levels stimulate growth and development and suggest protective effects. Recently, notable advancements in the field of biomedical applications and treatments using cold atmospheric plasma technology were made. This innovative approach has demonstrated remarkable success in various areas, including cell growth and proliferation, differentiation, and protection against oxidative stress. These favorable outcomes are attributed to the activation of reactive species-based pathways through cold atmospheric plasma stimulation. It has been shown that cold atmospheric plasma can have dose and time-dependent protective effects on brain cells by interfering with cell survival and proliferation pathways through reactive species, and it can be a potential therapeutic strategy to protect neurons against central nervous system (CNS) damages. Hence, this review focuses on the regeneration and neuroprotection effects and mechanisms of cold atmospheric plasma in treating neurological injuries and presents the latest developments in the application of this technology in the CNS.
 

*Corresponding Author: Akbar Hajizadeh MoghaddamEmails: a.hajizadeh@umz.ac.ir

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 1142 kb]   (248 Downloads)    
Type of Study: Review | Subject: Medical_Biotechnology
Received: 2023/10/24 | Accepted: 2024/01/25 | ePublished: 2024/02/9

References
1. Stryczewska HD, Boiko O. Applications of plasma produced with electrical discharges in gases for agriculture and biomedicine.Appl Sci. 2022; 12(9): 4405. DOI: 10.3390/app12094405 [DOI:10.3390/app12094405]
2. Liu D, Zhang Y, Xu M, Chen H, Lu X, Ostrikov K. Cold atmospheric pressure plasmas in dermatology: Sources, reactive agents, and therapeutic effects. Plasma Processes Polym. 2020; 17(4): 1900218. DOI: 10.1002/ppap.201900218 [DOI:10.1002/ppap.201900218]
3. Attri P, Koga K, Kurita H, Ishikawa K, Shiratani M. Prospects of plasma generated species interaction with organic and inorganic materials. Front Phys. 2023; 10:1118018. DOI: 10.3389/fphy.2022.1118018 [DOI:10.3389/fphy.2022.1118018]
4. Chen Z, Wirz RE. Cold atmospheric plasma (CAP) technology and applications. Synthesis Lectures on Mechanical Engineering. 2021; 6(2): i-191. URL: https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781636391816_sample.pdf. [DOI:10.2200/S01107ED1V01Y202105MEC035]
5. Braný D, Dvorská D, Halašová E, Škovierová H. Cold atmospheric plasma: A powerful tool for modern medicine. Int J Mol Sci. 2020; 21(8): 2932. DOI: 10.3390/ijms21082932 [DOI:10.3390/ijms21082932] [PMID] []
6. Deepak GD. Review on recent advances in cold plasma technology. EPJ Appl Phys. 2022; 97: 39. DOI: 10.1051/epjap/2022210275 [DOI:10.1051/epjap/2022210275]
7. Mitra S, Kaushik N, Moon IS, Choi EH, Kaushik NK. Utility of reactive species generation in plasma medicine for neuronal development. Biomedicines. 2020; 8(9): 348. DOI: 10.3390/biomedicines8090348 [DOI:10.3390/biomedicines8090348] [PMID] []
8. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018; 122(6): 877-902. DOI: 10.1161/CIRCRESAHA.117.311401 [DOI:10.1161/CIRCRESAHA.117.311401] [PMID] []
9. Biswas K, Alexander K, Francis MM. Reactive oxygen species: angels and demons in the life of a neuron. NeuroSci. 2022; 3(1): 130-45. DOI: 10.3390/neurosci3010011 [DOI:10.3390/neurosci3010011]
10. Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Giachello CN, et al. Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. Elife. 2018; 7: e39393. DOI: 10.7554/eLife.39393 [DOI:10.7554/eLife.39393] [PMID] []
11. Alimohammadi M, Golpour M, Sohbatzadeh F, Hadavi S, Bekeschus S, Niaki HA, et al. Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo. Biomolecules. 2020; 10(7): 1011. DOI: 10.3390/biom10071011 [DOI:10.3390/biom10071011] [PMID] []
12. Yang Y, Zheng M, Yang Y, Li J, Su Y-F, Li H-P, et al. Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment. Clin Oral Investig. 2020; 24: 1465-77. 10.1007/s00784-019-03179-2 [DOI:10.1007/s00784-019-03179-2] [PMID]
13. Bernhardt T, Semmler ML, Schäfer M, Bekeschus S, Emmert S, Boeckmann L. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019; 2019. DOI: 10.1155/2019/3873928 [DOI:10.1155/2019/3873928] [PMID] []
14. Park J, Lee H, Lee HJ, Kim GC, Kim S-S, Han S, et al. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells. Free Radic Biol Med. 2019; 134: 374-84. DOI: 10.1016/j.freeradbiomed.2019.01.032 [DOI:10.1016/j.freeradbiomed.2019.01.032] [PMID]
15. Yang X, Chen G, Yu KN, Yang M, Peng S, Ma J, et al. Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis. 2020; 11(4): 295. DOI: 10.1038/s41419-020-2459-3 [DOI:10.1038/s41419-020-2459-3] [PMID] []
16. Lamptey RN, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022; 23(3): 1851. DOI: 10.3390/ijms23031851 [DOI:10.3390/ijms23031851] [PMID] []
17. Hosinzadeh A, Abedi B, Moradi L. The effect of an eight-weeks high-intensity interval training on oxidative stress indices of heart tissue in male rats exposed to diazinon. J Birjand Univ Med Sci. 2022; 29(3): 241-51. [Persian]. URL: http://journal.bums.ac.ir/article-1-3195-fa.html.
18. Nohtani F, Behnam Rasouli M, Kheirabadi M. Comparison of antioxidant and analgesic effects of gallic acid and metformin in streptozotocin-induced hyperglycemic rats. J Birjand Univ Med Sci. 2023; 30(2): 141-52. [Persian]. URL: http://journal.bums.ac.ir/article-1-3254-fa.html.
19. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019; 24(8): 1583. DOI: 10.3390/molecules24081583 [DOI:10.3390/molecules24081583] [PMID] []
20. Jang J-Y, Hong YJ, Lim J, Choi JS, Choi EH, Kang S, et al. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway. Biomaterials. 2018; 156: 258-73. DOI: 10.1016/j.biomaterials.2017.11.045 [DOI:10.1016/j.biomaterials.2017.11.045] [PMID]
21. Conway GE, He Z, Hutanu AL, Cribaro GP, Manaloto E, Casey A, et al. Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci Rep. 2019; 9(1): 12891. DOI: 10.1038/s41598-019-49013-3 [DOI:10.1038/s41598-019-49013-3] [PMID] []
22. Yan X, Ouyang J, Zhang C, Shi Z, Wang B, Ostrikov KK. Plasma medicine for neuroscience-An introduction. Chin Neurosurg J. 2019; 5(1): 1-8. DOI: 10.1186/s41016-019-0172-9 [DOI:10.1186/s41016-019-0172-9] [PMID] []
23. Von Woedtke T, Laroussi M, Gherardi M. Foundations of plasmas for medical applications. Plasma Sources Sci Technol. 2022; 31(5): 05400210.1088/1361-6595/ac604f. DOI: 10.1088/1361-6595/ac604f [DOI:10.1088/1361-6595/ac604f]
24. Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu X, et al. Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. IEEE Trans Radiat Plasma Med Sci. 2021; 6(2): 127-57. DOI: 10.1109/TRPMS.2021.3135118 [DOI:10.1109/TRPMS.2021.3135118]
25. von Woedtke T, Emmert S, Metelmann H-R, Rupf S, Weltmann K-D. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phys Plasmas. 2020; 27(7). DOI: 10.1063/5.0008093 [DOI:10.1063/5.0008093]
26. Lotfi M, Khani M, Shokri B. A review of cold atmospheric plasma applications in dermatology and aesthetics. Plasma Med. 2023; 13(1). DOI: 10.1615/PlasmaMed.2023049359 [DOI:10.1615/PlasmaMed.2023049359]
27. von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann K-D. Plasma medicine: A field of applied redox biology. In vivo. 2019; 33(4): 1011-26. DOI: 10.21873/invivo.11570 [DOI:10.21873/invivo.11570] [PMID] []
28. Loizou C, Kniazeva V, Apostolou T, Kornev A, Kostevitch S, Roslyakov E, et al. Effect of Cold Atmospheric Plasma on SARS-CoV-2 Inactivation: A Pilot Study in the Hospital Environment. COVID. 2022; 2(10): 1396-404. DOI: 10.3390/covid2100100 [DOI:10.3390/covid2100100]
29. Pourbagher R, Abbaspour-Fard MH, Sohbatzadeh F, Rohani A. In vivo antibacterial effect of non-thermal atmospheric plasma on pseudomonas tolaasii, a causative agent of Agaricus bisporus blotch disease. Food Control. 2021; 130(1): 108319. DOI: 10.1016/j.foodcont.2021.108319 [DOI:10.1016/j.foodcont.2021.108319]
30. Wang Y, Li B, Shang H, Ma R, Zhu Y, Yang X, et al. Effective inhibition of fungal growth, deoxynivalenol biosynthesis and pathogenicity in cereal pathogen Fusarium spp. by cold atmospheric plasma. Chem Eng J. 2022; 437: 135307. DOI: 10.1016/j.cej.2022.135307 [DOI:10.1016/j.cej.2022.135307]
31. Das S, Gajula VP, Mohapatra S, Singh G, Kar S. Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sci Rev. 2022: 100037. DOI: 10.1016/j.hsr.2022.100037 [DOI:10.1016/j.hsr.2022.100037]
32. Domonkos M, Tichá P, Trejbal J, Demo P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl. Sci. 2021; 11(11): 4809. DOI: 10.3390/app11114809 [DOI:10.3390/app11114809]
33. Rafiei A, Sohbatzadeh F, Hadavi S, Bekeschus S, Alimohammadi M, Valadan R. Inhibition of murine melanoma tumor growth in vitro and in vivo using an argon-based plasma jet. Clin Plasma Med. 2020; 19-20(11): 100102. DOI: 10.1016/j.cpme.2020.100102 [DOI:10.1016/j.cpme.2020.100102]
34. Vaquero J, Judée F, Vallette M, Decauchy H, Arbelaiz A, Aoudjehane L, et al. Cold-atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma. Cancers. 2020; 12(5): 1280. DOI: 10.3390/cancers12051280 [DOI:10.3390/cancers12051280] [PMID] []
35. Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of plasma-activated solutions for potential cancer therapy. Free Radic Res. 2023; 57(2): 69-80. DOI: 10.1080/10715762.2023.2193308 [DOI:10.1080/10715762.2023.2193308] [PMID]
36. Privat-Maldonado A, Schmidt A, Lin A, Weltmann K-D, Wende K, Bogaerts A, et al. Ros from physical plasmas: Redox chemistry for biomedical therapy. Oxid Med Cell Longev. 2019; 2019: 9062098. DOI: 10.1155/2019/9062098 [DOI:10.1155/2019/9062098] [PMID] []
37. Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, et al. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem. 2019; 400(1): 39-62. DOI: 10.1515/hsz-2018-0226 [DOI:10.1515/hsz-2018-0226] [PMID]
38. Verlackt C, Van Boxem W, Bogaerts A. Transport and accumulation of plasma generated species in aqueous solution. Phys Chem Chem. 2018; 20(10): 6845-59. DOI: 10.1039/C7CP07593F [DOI:10.1039/C7CP07593F] [PMID]
39. Laroussi M. Plasma medicine: a brief introduction. Plasma. 2018; 1(1): 47-60. DOI: 10.3390/plasma1010005 [DOI:10.3390/plasma1010005]
40. Garcia-Caparros P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, et al. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev. 2021; 87(4): 421-66. DOI: 10.1007/s12229-020-09231-1 [DOI:10.1007/s12229-020-09231-1]
41. Ludhiadch A, Sharma R, Muriki A, Munshi A. Role of calcium homeostasis in ischemic stroke: a review. CNS Neurol Disord Drug Targets. 2022; 21(1): 52-61. DOI: 10.2174/1871527320666210212141232 [DOI:10.2174/1871527320666210212141232] [PMID]
42. Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative stress and energy metabolism in the brain: Midlife as a turning point. Antioxidants. 2021; 10(11): 1715. DOI: 10.3390/antiox10111715 [DOI:10.3390/antiox10111715] [PMID] []
43. Hajizadeh Moghaddam A, Ahmadnia H, Jelodar SK, Ranjbar M. Hesperetin nanoparticles attenuate anxiogenic-like behavior and cerebral oxidative stress through the upregulation of antioxidant enzyme expression in experimental dementia of Alzheimer's type. Neurol Res. 2020; 42(6): 477-86. DOI: 10.1080/01616412.2020.1747716 [DOI:10.1080/01616412.2020.1747716] [PMID]
44. Moghaddam AH, Zare M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer's disease. Biomed Pharmacother. 2018; 97: 1096-101. DOI: 10.1016/j.biopha.2017.11.047 [DOI:10.1016/j.biopha.2017.11.047] [PMID]
45. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RD. Oxidative Stress and Antioxidants in Neurodegenerative disorders. Antioxidants. 2023; 12(2): 517. DOI: 10.3390/antiox12020517 [DOI:10.3390/antiox12020517] [PMID] []
46. Moghaddam AH, Sangdehi SRM, Ranjbar M, Hasantabar V. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats. Eur J Pharmacol. 2020; 877: 173066. DOI: 10.1016/j.ejphar.2020.173066 [DOI:10.1016/j.ejphar.2020.173066] [PMID]
47. Zandsalimi F, Aghamiri S, Roshanzamiri S, Shahmohamadnejad S, Ghanbarian H. The emerging role of cold atmospheric plasma in glioblastoma therapy. Plasma Process Polym. 2020; 17(10): 1900189. DOI: 10.1002/ppap.201900189 [DOI:10.1002/ppap.201900189]
48. Adhikari M, Adhikari B, Adhikari A, Yan D, Soni V, Sherman J, et al. Cold atmospheric plasma as a novel therapeutic tool for the treatment of brain cancer. Curr Pharm Des. 2020; 26(19): 2195-206. DOI: 10.2174/1381612826666200302105715 [DOI:10.2174/1381612826666200302105715] [PMID]
49. Bekeschus S, Ispirjan M, Freund E, Kinnen F, Moritz J, Saadati F, et al. Gas plasma exposure of glioblastoma is cytotoxic and immunomodulatory in patient-derived GBM tissue. Cancers. 2022; 14(3): 813. DOI: 10.3390/cancers14030813. [DOI:10.3390/cancers14030813] [PMID] []
50. Kurake N, Ishikawa K, Tanaka H, Hashizume H, Nakamura K, Kajiyama H, et al. Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch Biochem Biophys. 2019; 662: 83-92. DOI: 10.1016/j.abb.2018.12.001 [DOI:10.1016/j.abb.2018.12.001] [PMID]
51. Akter M, Jangra A, Choi SA, Choi EH, Han I. Non-thermal atmospheric pressure bio-compatible plasma stimulates apoptosis via p38/MAPK mechanism in U87 malignant glioblastoma. Cancers. 2020; 12(1): 245. DOI: 10.3390/cancers12010245 [DOI:10.3390/cancers12010245] [PMID] []
52. Tanaka H, Hosoi Y, Ishikawa K, Yoshitake J, Shibata T, Uchida K, et al. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified. Sci Rep. 2021; 11(1): 1-10. DOI: 10.1038/s41598-021-98020-w [DOI:10.1038/s41598-021-98020-w] [PMID] []
53. de Carvalho AMA, Behan S, Scally L, Sarangapani C, Malone R, Cullen PJ, et al. Pin Electrode Reactor: A novel cold atmospheric plasma device and its potential in glioblastoma treatment. bioRxiv. 2021: 2021.01. 08.425903. DOI: 10.1101/2021.01.08.425903 [DOI:10.1101/2021.01.08.425903]
54. Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma-a comprehensive review. Cancer Drug Resist. 2021; 4(1): 17-43. DOI: 10.20517%2Fcdr.2020.79
55. Shaw P, Kumar N, Privat-Maldonado A, Smits E, Bogaerts A. Cold atmospheric plasma increases temozolomide sensitivity of three-dimensional glioblastoma spheroids via oxidative stress-mediated DNA damage. Cancers. 2021; 13(8): 1780. DOI: 10.3390/cancers13081780 [DOI:10.3390/cancers13081780] [PMID] []
56. Gjika E, Pal-Ghosh S, Kirschner ME, Lin L, Sherman JH, Stepp MA, et al. Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep. 2020; 10(1): 16495. DOI: 10.1038/s41598-020-73457-7 [DOI:10.1038/s41598-020-73457-7] [PMID] []
57. Soni V, Adhikari M, Simonyan H, Lin L, Sherman JH, Young CN, et al. In vitro and in vivo enhancement of temozolomide effect in human glioblastoma by non-invasive application of cold atmospheric plasma. Cancers. 2021; 13(17): 4485. DOI: 10.3390/cancers13174485 [DOI:10.3390/cancers13174485] [PMID] []
58. Kaushik NK, Kaushik N, Wahab R, Bhartiya P, Linh NN, Khan F, et al. Cold atmospheric plasma and gold quantum dots exert dual cytotoxicity mediated by the cell receptor-activated apoptotic pathway in glioblastoma cells. Cancers. 2020; 12(2): 457. DOI: 10.3390/cancers12020457 [DOI:10.3390/cancers12020457] [PMID] []
59. He Z, Liu K, Scally L, Manaloto E, Gunes S, Ng SW, et al. Cold atmospheric plasma stimulates clathrin-dependent endocytosis to repair oxidised membrane and enhance uptake of nanomaterial in glioblastoma multiforme cells. Sci Rep. 2020; 10(1): 6985. DOI: 10.1038/s41598-020-63732-y [DOI:10.1038/s41598-020-63732-y] [PMID] []
60. Ara ES, Noghreiyan AV, Sazgarnia A. Evaluation of photodynamic effect of Indocyanine green (ICG) on the colon and glioblastoma cancer cell lines pretreated by cold atmospheric plasma. Photodiagnosis Photodyn Ther. 2021; 35: 102408. DOI: 10.1016/j.pdpdt.2021.102408 [DOI:10.1016/j.pdpdt.2021.102408] [PMID]
61. Van Loenhout J, Freire Boullosa L, Quatannens D, De Waele J, Merlin C, Lambrechts H, et al. Auranofin and cold atmospheric plasma synergize to trigger distinct cell death mechanisms and immunogenic responses in glioblastoma. Cells. 2021; 10(11): 2936. DOI: 10.3390/cells10112936 [DOI:10.3390/cells10112936] [PMID] []
62. Yang F, Zhou Y, Yu H, Yang J, Zhu C, Ahmad N, et al. Combination of metformin and cold atmospheric plasma induces glioma cell death to associate with c-Fos. Neoplasma. 2021; 68(1): 126-34. DOI: 10.4149/neo_2020_200325n307 [DOI:10.4149/neo_2020_200325N307] [PMID]
63. Li Y, Choi EH, Han I. Regulation of redox homeostasis by nonthermal biocompatible plasma discharge in stem cell differentiation. Oxid Med Cell Longev. 2019; 2019: 2318680. DOI: 10.1155/2019/2318680 [DOI:10.1155/2019/2318680] [PMID] []
64. Xiong Z, Zhao S, Yan X. Nerve stem cell differentiation by a one-step cold atmospheric plasma treatment in vitro. J Vis Exp. 2019(143): e58663. DOI: 10.3791/58663 [DOI:10.3791/58663]
65. Zhao S, Han R, Li Y, Lu C, Chen X, Xiong Z, et al. Investigation of the mechanism of enhanced and directed differentiation of neural stem cells by an atmospheric plasma jet: A gene-level study. J Appl Phys. 2019; 125(16): 163301. DOI: 10.1063/1.5060650 [DOI:10.1063/1.5060650]
66. Katiyar KS, Lin A, Fridman A, Keating CE, Cullen DK, Miller V. Non-thermal plasma accelerates astrocyte regrowth and neurite regeneration following physical trauma in vitro. Appl Sci. 2019; 9(18): 3747. DOI: 10.3390/app9183747 [DOI:10.3390/app9183747]
67. Do CB, Jaiswal MS, Jang Y-S, Kim U-K, Kim G-C, Hwang D-S. Non-thermal plasma directly accelerates neuronal proliferation by stimulating axon formation. Sci Rep. 2022; 12(1): 15868. DOI: 10.1038/s41598-022-20063-4 [DOI:10.1038/s41598-022-20063-4] [PMID] []
68. Haccho T, Kanno A, Ichikawa H, Yamamoto K, Morita Y, Nakamachi E. Enhancement of PC12 Neurite Extension via Plasma-Activated Medium by Nonthermal Atmospheric-Pressure Plasma-Bubbling System. Plasma Med. 2019; 9(2). DOI: 10.1615/PlasmaMed.2020033059 [DOI:10.1615/PlasmaMed.2020033059]
69. Yan X, Meng Z, Ouyang J, Qiao Y, Li J, Jia M, et al. Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries. J Phys D: Appl Phys. 2018; 51(8): 085401. DOI: 10.1088/1361-6463/aaa867 [DOI:10.1088/1361-6463/aaa867]
70. Yan X, Yang B, Ouyang J, Zhang C, Lai Y, Shi Z, et al. Mechanisms of atmospheric pressure plasma protection of neuronal cells under simulated ischemic stroke conditions. AIP Adv. 2022; 12(2). DOI: 10.1063/5.0064301 [DOI:10.1063/5.0064301]
71. Tian M, Qi M, Liu Z, Xu D, Chen H, Kong MG. Cold atmospheric plasma elicits neuroprotection against glutamate excitotoxicity by activating cellular antioxidant defense. Plasma Chem Plasma Process. 2021; 41(5): 945-54. DOI: 10.1007/s11090-021-10172-9 [DOI:10.1007/s11090-021-10172-9]
72. Chen Y, Yang B, Xu L, Shi Z, Han R, Yuan F, et al. Inhalation of Atmospheric-Pressure Gas Plasma Attenuates Brain Infarction in Rats With Experimental Ischemic Stroke. Front Neurosci. 2022; 16: 875053. DOI: 10.3389/fnins.2022.875053 [DOI:10.3389/fnins.2022.875053] [PMID] []
73. Chen Y, Yang B, Liu Y, Xu L, Shi Z, Liu Y, et al. Application of an atmospheric pressure plasma jet in a rat model of ischaemic stroke: Design, optimisation, and characteristics. High Volt. 2022; 8(2): 315-25. [DOI:10.1049/hve2.12267]
74. Xiao C, Chen T, Yuan M, Li Y, Wang F. A Novel Polysaccharide DSPP-1 from Durian Seed: Structure Characterization and Its Protective Effects Against Alzheimer's Disease in a Transgenic Caenorhabditis elegans Model. Plant Foods Hum Nutr. 2023;78(2):329-35. DOI: 10.1007/s11130-023-01059-5 [DOI:10.1007/s11130-023-01059-5] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Birjand University of Medical Sciences

Designed & Developed by : Yektaweb