Volume 30, Issue 3 (December 2023)                   J Birjand Univ Med Sci. 2023, 30(3): 216-230 | Back to browse issues page

Research code: 15/20/12124
Ethics code: IR.AUSMT.REC.1400.03


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoudi M, Azizi H. Communication network between pluripotency factors in Embryonic Stem Cell-like cells and their role in testicular germ cell cancer. Journals of Birjand University of Medical Sciences 2023; 30 (3) :216-230
URL: http://journal.bums.ac.ir/article-1-3309-en.html
1- Master of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
2- Ph.D. in Cellular and Molecular Biology, Stem Cells, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran , h.azizi@ausmt.ac.ir
Abstract:   (673 Views)
Background and Aims: In stem cells, the activation of specific powerful factors, such as OCT4, NANOG, KLF4, and SOX2, in conjunction with transcriptional control, triggers potency in both sperm-producing and cancerous stem cells. In the present study, we not only construct a protein-protein network and examine the roles of these factors in the development and advancement of testicular germ cell cancer but also explore the immunohistochemistry of the mentioned genes in pseudo-embryonic stem cells (ESC-like cells).
Materials and Methods: In this experimental study, the String database was used along with software tools, such as Cytoscape and Gephi, to examine the strength and interaction between these genes and construct functional networks. Following this, spermatogonial stem cells were isolated from mice, and after culture, ESC-like cells were manually generated from them. Subsequently, the expression of OCT4, NANOG, KLF4, and SOX2 in these ESC-like cells was investigated using immunocytochemistry (ICC).
Results: According to the bioinformatics results, the target genes exhibit very strong interactions with each other, leading to the enhancement of their functionality and the enrichment of signaling pathways, particularly in cancer. Furthermore, the permanent expression of the OCT4 gene and the expression of the NANOG, SOX2, and KLF4 genes were demonstrated in ESC-like cells.
Conclusion: These data provide further insights into the potential of ESC-like cells. Given the highly interconnected network among these mentioned genes, their roles in enriching cancer pathways, and their key role in advancing spermatogenesis for male infertility treatment and cancer diagnosis, they have significant importance. These findings contribute to a better understanding of the potential therapeutic applications of these genes and open avenues for further research in these areas.

 
*Corresponding Author: Hossein AziziEmails: h.azizi@ausmt.ac.ir

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 1485 kb]   (282 Downloads)    
Type of Study: Original Article | Subject: Reproductive Biology
Received: 2023/07/31 | Accepted: 2023/11/8 | ePublished ahead of print: 2023/12/4 | ePublished: 2023/12/22

References
1. Song H, Park H-J, Lee W-Y, Lee KH. Models and Molecular Markers of Spermatogonial Stem Cells in Vertebrates: To Find Models in Nonmammals. Stem Cells Int. 2022; 2022: 4755514. DOI: 10.1155/2022/4755514. [DOI:10.1155/2022/4755514] [PMID] []
2. Raghavan P. Metadichol, a natural ligand for the expression of Yamanaka reprogramming factors in somatic and primary cancer cell lines. Research Square. 2022. DOI: 10.21203/rs.3.rs-1727437/v4 [DOI:10.21203/rs.3.rs-1727437/v4]
3. Azizi H, Asgari B, Skutella T. Pluripotency potential of embryonic stem cell-like cells derived from mouse testis. Cell Journal (Yakhteh). 2019; 21(3): 281-9. DOI: 10.22074/cellj.2019.6068
4. Grubelnik G, Boštjančič E, Pavlič A, Kos M, Zidar N. NANOG expression in human development and cancerogenesis. Exp Biol Med (Maywood). 2020; 245(5): 456-64. DOI: 10.1177/1535370220905560 [DOI:10.1177/1535370220905560] [PMID] []
5. Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, et al. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol. 2021; 236(4): 2443-58. DOI: 10.1002/jcp.30063 [DOI:10.1002/jcp.30063] [PMID]
6. Grimm D, Bauer J, Wise P, Krüger M, Simonsen U, Wehland M, et al., editors. The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol. 2020: 67(Pt 1): 122-153. DOI: 10.1016/j.semcancer.2019.03.004 [DOI:10.1016/j.semcancer.2019.03.004] [PMID]
7. Jagga B, Edwards M, Pagin M, Wagstaff KM, Aragão D, Roman N, et al. Structural basis for nuclear import selectivity of pioneer transcription factor SOX2. Nat Commun. 2021; 12(1): 1-11. DOI: 10.1038/s41467-020-20194-0 [DOI:10.1038/s41467-020-20194-0] [PMID] []
8. He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov. 2023; 9(1): 118. DOI: 10.1038/s41420-023-01416-y [DOI:10.1038/s41420-023-01416-y] [PMID] []
9. Villodre ES, Felipe KB, Oyama MZ, de Oliveira FH, da Costa Lopez PL, Solari C, et al. Silencing of the transcription factors Oct4, Sox2, Klf4, c-Myc or Nanog has different effect on teratoma growth. Biochem Biophys Res Commun. 2019; 517(2): 324-9. DOI: 10.1016/j.bbrc.2019.07.064 [DOI:10.1016/j.bbrc.2019.07.064] [PMID]
10. Batool A, Karimi N, Wu X-N, Chen S-R, Liu Y-X. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci. 2019; 76(9): 1713-27. DOI: 10.1007/s00018-019-03022-7 [DOI:10.1007/s00018-019-03022-7] [PMID] []
11. Gurcan F, Cagiltay NE. Exploratory analysis of topic interests and their evolution in bioinformatics research using semantic text mining and probabilistic topic modeling. IEEE Access. 2022; 10: 31480-93. DOI: 10.1109/ACCESS.2022.3160795 [DOI:10.1109/ACCESS.2022.3160795]
12. Azizi H, Conrad S, Hinz U, Asgari B, Nanus D, Peterziel H, et al. Derivation of Pluripotent Cells from Mouse SSCs Seems to Be Age Dependent. Stem Cells Int. 2016; 2016: 8216312. DOI: 10.1155/2016/8216312 [DOI:10.1155/2016/8216312] [PMID] []
13. Azizi H, Koruji M, Skutella T. Comparison of PLZF gene expression between pluripotent stem cells and testicular germ cells. Cell J (Yakhteh). 2020; 22(1): 60. DOI: 10.22074%2Fcellj.2020.6532
14. Azizi H, Tabar AN, Skutella T, Govahi M. In vitro and in vivo determinations of the anti-GDNF family receptor alpha 1 antibody in mice by immunochemistry and RT-PCR. Int J Fertil Steril. 2020; 14(3): 228-33. DOI: 10.22074/ijfs.2020.6051
15. Lustofin S, Kamińska A, Brzoskwinia M, Cyran J, Kotula-Balak M, Bilińska B, Hejmej A. Nuclear and membrane receptors for sex steroids are involved in the regulation of Delta/Serrate/LAG-2 proteins in rodent sertoli cells. Int J Mol Sci. 2022; 23(4): 2284. DOI: 10.3390/ijms23042284 [DOI:10.3390/ijms23042284] [PMID] []
16. Radhakrishnan K, Luu M, Iaria J, Sutherland JM, McLaughlin EA, Zhu H-J, Loveland KL. Activin and BMP Signalling in Human Testicular Cancer Cell Lines, and a Role for the Nucleocytoplasmic Transport Protein Importin-5 in Their Crosstalk. Cells. 2023;12(7):1000. Cells. 2023; 12(7): 1000. DOI: 10.3390/cells12071000 [DOI:10.3390/cells12071000] [PMID] []
17. Bu L, Yang Q, McMahon L, Xiao G-Q, Li F. Wnt suppressor and stem cell regulator TCF7L1 is a sensitive immunohistochemical marker to differentiate testicular seminoma from non-seminomatous germ cell tumor. Exp Mol Pathol. 2019; 110: 104293. DOI: 10.1016/j.yexmp.2019.104293 [DOI:10.1016/j.yexmp.2019.104293] [PMID]
18. Das MK, Haugen ØP, Haugen TB. Diverse roles and targets of miRNA in the pathogenesis of testicular germ cell tumour. Cancers. 2022; 14(5): 1190. DOI: 10.3390/cancers14051190 [DOI:10.3390/cancers14051190] [PMID] []
19. Baroni T, Arato I, Mancuso F, Calafiore R, Luca G. On the origin of testicular germ cell tumors: from gonocytes to testicular cancer. Front Endocrinol (Lausanne). 2019; 10: 343. DOI: 10.3389/fendo.2019.00343 [DOI:10.3389/fendo.2019.00343] [PMID] []
20. Zhang J, Arisha AH, Hua J. Epigenetic regulation in stem cells. Epigenetics and Reproductive Health: Academic Press. 2021; 69-79. DOI: 10.1016/B978-0-12-819753-0.00004-0 [DOI:10.1016/B978-0-12-819753-0.00004-0]
21. Azizi H, NiaziTabar A, Mohammadi A, Skutella T. Characterization of DDX4 gene expression in human cases with non-obstructive azoospermia and in sterile and fertile mice. J Reprod Infertil. 2021; 22(2): 85-91. DOI: 10.18502%2Fjri.v22i2.5793
22. Ronchi A, Cozzolino I, Montella M, Panarese I, Zito Marino F, Rossetti S, et al. Extragonadal germ cell tumors: not just a matter of location. A review about clinical, molecular and pathological features. Cancer Med. 2019; 8(16): 6832-40. DOI: 10.1002/cam4.2195 [DOI:10.1002/cam4.2195] [PMID] []
23. Perri A, Rago V, Malivindi R, Maltese L, Lofaro D, Greco EA, et al. Overexpression of p75NTR in Testicular Germ Cell Tumors: a New Biomarker of Cancer Differentiation? 2021; 2021030273. DOI: 10.20944/preprints202103.0273.v1 [DOI:10.20944/preprints202103.0273.v1]
24. Kim DK, Song B, Han S, Jang H, Bae S-H, Kim HY, et al. Phosphorylation of OCT4 serine 236 inhibits germ cell tumor growth by inducing differentiation. Cancers. 2020; 12(9): 2601. DOI: 10.3390/cancers12092601 [DOI:10.3390/cancers12092601] [PMID] []
25. Zhang Q, Han Z, Zhu Y, Chen J, Li W. The role and specific mechanism of OCT4 in cancer stem cells: a review. Int J Stem Cells. 2020; 13(3): 312-25. DOI: 10.15283/ijsc20097 [DOI:10.15283/ijsc20097] [PMID] []
26. Basati G, Mohammadpour H, Emami Razavi A. Association of high expression levels of SOX2, NANOG, and OCT4 in gastric cancer tumor tissues with progression and poor prognosis. J Gastrointest Cancer. 2020; 51(1): 41-7. DOI: 10.1007/s12029-018-00200-x [DOI:10.1007/s12029-018-00200-x] [PMID]
27. Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, et al. Nanog, as a key cancer stem cell marker in tumor progression. Gene. 2022; 827: 146448. DOI: 10.1016/j.gene.2022.146448 [DOI:10.1016/j.gene.2022.146448] [PMID]
28. Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J, editors. SOX2 in development and cancer biology. Semin Cancer Biol. 2020: 67(Pt 1): 74-82. Elsevier. DOI: 10.1016/j.semcancer.2019.08.007 [DOI:10.1016/j.semcancer.2019.08.007] [PMID]
29. Subbalakshmi AR, Sahoo S, McMullen I, Saxena AN, Venugopal SK, Somarelli JA, Jolly MK. KLF4 Induces Mesenchymal-Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors. Cancers. 2021; 13(20): 5135. DOI: 10.3390/cancers13205135 [DOI:10.3390/cancers13205135] [PMID] []
30. Qi X-t, Li Y-l, Zhang Y-q, Xu T, Lu B, Fang L, et al. KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacol Sin. 2019; 40(4): 546-55. DOI: 10.1038/s41401-018-0050-6 [DOI:10.1038/s41401-018-0050-6] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journals of Birjand University of Medical Sciences

Designed & Developed by : Yektaweb