XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vojdanitalab K, Saeedi M, Faramarzi M A, Mojtabavi S. Introduction, synthesis procedures, and applications of organic-inorganic hybrid nanoflowers in biosciences. Journals of Birjand University of Medical Sciences 2023; 30 (1) :5-32
URL: http://journal.bums.ac.ir/article-1-3240-en.html
1- PharmD, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, Iran
2- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran , smojtabavi@sina.tums.ac.ir
Abstract:   (620 Views)
Organic-inorganic hybrid nanoflowers with flower-like morphology are new nanostructures comprising organic and inorganic components. In general, the organic component of hybrid nanoflowers mostly consists of proteins, DNA, RNA, plant extracts, metabolites, and natural polymers; and the inorganic component composes of various metal phosphates, including copper, calcium, manganese, iron, zinc, cobalt, cadmium, aluminum, silver, gold, etc. Until now, five notable procedures have been introduced for their synthesis, including biomineralization, ultra-fast sonication, the two-step method, shear stress, and the concentrated method. These nanostructures have many promising applications in diverse fields, such as the immobilization of enzymes and biomolecules, bio-catalysis of chemical reactions, bioremediation, electrochemical biosensors, drug and gene carriers, diagnosis of various diseases, photothermal therapy, etc., and wide range of research has been performed on them in the last recent decade.
Google Scholar, Scopus, ScienceDirect, and Springer databases were searched using the keywords hybrid nanostructure, nanoflower, biosciences, and biocatalyst to find related articles.
Studying these organic-inorganic hybrid nanocrystals may lead to finding new creative solutions in the effective application of enzyme-based systems, the rapid development of bionanomaterials, and biotechnology industries. The present review has investigated the different types of hybrid nanoflowers, their synthesis procedures and structural characteristics, and their applications in biosciences.

*Corresponding Author: Somayeh MojtabaviEmails: smojtabavi@sina.tums.ac.ir

View ORCID iD Profile

You can also search for this author in:  PubMed     ResearchGate   Scopus    Google Scholar    Google Scholar Profile

Full-Text [PDF 1471 kb]   (249 Downloads) |   |   Full-Text (HTML)  (309 Views)  
Type of Study: Review | Subject: Pharmacy
Received: 2023/01/25 | Accepted: 2023/06/17 | ePublished ahead of print: 2023/06/17 | ePublished: 2023/06/5

References
1. Sreejith S, Huong TTM, Borah P, Zhao Y. Organic-inorganic nanohybrids for fluorescence, photoacoustic and Raman bioimaging. Science bulletin. 2015; 60: 665-78. DOI: 10.1007/s11434-015-0765-4 [DOI:10.1007/s11434-015-0765-4]
2. Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nat Nanotechnol. 2012; 7(7): 428-32. DOI: 10.1038/nnano.2012.80 [DOI:10.1038/nnano.2012.80] [PMID]
3. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, et al. Preparation of novel 3D graphene networks for supercapacitor applications. Small. 2011; 7(22): 3163-8. DOI: 10.1002/smll.201100990 [DOI:10.1002/smll.201100990] [PMID]
4. Jafari-Nodoushan H, Mojtabavi S, Faramarzi MA, Samadi N. Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Adv Colloid Interface Sci. 2022; 309:102780. DOI: 10.1016/j.cis.2022.102780 [DOI:10.1016/j.cis.2022.102780] [PMID]
5. Cui J, Jia S. Organic-inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord Chem Rev. 2017; 352: 249-63. DOI: 10.1016/j.ccr.2017.09.008 [DOI:10.1016/j.ccr.2017.09.008]
6. Forootanfar H, Movahednia MM, Yaghmaei S, Tabatabaei-Sameni M, Rastegar H, Sadighi A, et al. Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase. J Hazard Mater. 2012; 209-210: 199-203. DOI: 10.1016/j.jhazmat.2012.01.012 [DOI:10.1016/j.jhazmat.2012.01.012] [PMID]
7. Tran TD, Kim MI. Organic-inorganic hybrid nanoflowers as potent materials for biosensing and biocatalytic applications. Bio Chip J. 2018; 12: 268-79. DOI: 10.1007/s13206-018-2409-7 [DOI:10.1007/s13206-018-2409-7]
8. Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci. 2021; 295: 102484. DOI: 10.1016/j.cis.2021.102484 [DOI:10.1016/j.cis.2021.102484] [PMID]
9. Lee SW, Cheon SA, Kim MI, Park TJ. Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnol. 2015; 13: 1-10. DOI: 10.1186/s12951-015-0118-0 [DOI:10.1186/s12951-015-0118-0] [PMID] []
10. Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, et al. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf B Biointerfaces. 2019; 182: 110354. DOI: 10.1016/j.colsurfb.2019.110354 [DOI:10.1016/j.colsurfb.2019.110354] [PMID]
11. Wu Z, Li H, Zhu X, Li S, Wang Z, Wang L, et al. Using laccases in the nanoflower to synthesize viniferin. Catalysts. 2017; 7(6): 188. DOI: 10.3390/catal7060188 [DOI:10.3390/catal7060188]
12. Batule BS, Park KS, Gautam S, Cheon HJ, Kim MI, Park HG. Intrinsic peroxidaselike activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sens Actuators B. 2019; 283: 749-54. DOI: 10.1016/j.snb.2018.12.028 [DOI:10.1016/j.snb.2018.12.028]
13. Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, et al. Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol. 2020; 152: 207-22. DOI: 10.1016/j.ijbiomac.2020.02.258 [DOI:10.1016/j.ijbiomac.2020.02.258] [PMID]
14. Li Y, Fei X, Liang L, Tian J, Xu L, Wang X, et al. The influence of synthesis conditions on enzymatic activity of enzyme-inorganic hybrid nanoflowers. J Mol Catal B: Enzym. 2016; 133: 92-7. DOI: 10.1016/j.molcatb.2016.08.001 [DOI:10.1016/j.molcatb.2016.08.001]
15. Lin Z, Xiao Y, Wang L, Yin Y, Zheng J, Yang H, et al. Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC advances. 2014; 4: 13888-91. DOI: 10.1039/C4RA00268G [DOI:10.1039/C4RA00268G]
16. Zhang M, Yang N, Liu Y, Tang J. Synthesis of catalase-inorganic hybrid nanoflowers via sonication for colorimetric detection of hydrogen peroxide. Enzyme Microb Technol. 2019; 128: 22-5. DOI: 10.1016/j.enzmictec.2019.04.016 [DOI:10.1016/j.enzmictec.2019.04.016] [PMID]
17. Lin Z, Xiao Y, Yin Y, Hu W, Liu W, Yang H. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS applied materials & interfaces. 2014; 6(13): 10775-82. DOI: 10.1021/am502757e [DOI:10.1021/am502757e] [PMID]
18. Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol. 2016; 86: 134-42. DOI: 10.1016/j.enzmictec.2015.09.005 [DOI:10.1016/j.enzmictec.2015.09.005] [PMID]
19. He X, Chen L, He Q, Xiao H, Zhou X, Ji H. Cytochrome P450 enzyme‐copper phosphate hybrid nano‐flowers with superior catalytic performances for selective oxidation of sulfides. Chin. J. Chem. 2017; 35(5): 693-8. DOI: 10.1002/cjoc.201600714 [DOI:10.1002/cjoc.201600714]
20. Xu Z, Wang R, Liu C, Chi B, Gao J, Chen B, Xu H. A new l-arabinose isomerase with copper ion tolerance is suitable for creating protein-inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC advances. 2016; 6(37): 30791-4. DOI: 10.1039/C5RA27035A [DOI:10.1039/C5RA27035A]
21. Wang L-B, Wang Y-C, He R, Zhuang A, Wang X, Zeng J, et al. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J Am Chem Soc. 2013; 135(4): 1272-5. DOI: 10.1021/ja3120136 [DOI:10.1021/ja3120136] [PMID]
22. Koley P, Sakurai M, Takei T, Aono M. Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC advances. 2016; 6(89): 86607-16. DOI: [DOI:10.1039/C6RA12818A]
23. Mojtabavi S, Rezayaraghi F, Adelpour T, Kiaei F, Delnavazi MR, Faramarzi MA. Synthesis and characterization of quercetin@Ca3(PO4)2 hybrid nanofibers with antibiofilm properties and antioxidant activity for the deep-frying procedure of sunflower oil. Food Bioprocess Technol. 2023; 1-8. DOI: 10.1007/s11947-023-03053-w [DOI:10.1007/s11947-023-03053-w]
24. Wang A, Chen X, Yu J, Li N, Li H, Yin Y,et al. Green preparation of lipase@Ca3(PO4)2 hybrid nanoflowers using bone waste from food production for efficient synthesis of clindamycin palmitate. J Industr Eng Chem. 2020; 89: 383-91. DOI: 10.1016/j.jiec.2020.06.007 [DOI:10.1016/j.jiec.2020.06.007]
25. Yang H, He P, Yin Y, Mao Z, Zhang J, Zhong C, Xie T, Wang A. Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol A in wastewater. Bioprocess Biosyst Eng. 2021; 44(10): 2061-73. DOI: 10.1007/s00449-021-02583-x [DOI:10.1007/s00449-021-02583-x] [PMID]
26. Soni S, Dwivedee BP, Banerjee UC. An Ultrafast Sonochemical Strategy to Synthesize Lipase‐Manganese Phosphate Hybrid Nanoflowers with Promoted Biocatalytic Performance in the Kinetic Resolution of β‐Aryloxyalcohols. ChemNanoMat. 2018; 4(9): 1007-20. DOI: 10.1002/cnma.201800250 [DOI:10.1002/cnma.201800250]
27. Zhang Z, Zhang Y, Song R, Wang M, Yan F, He L, et al. Manganese (II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sens. Actuators B Chem.2015; 211: 310-7. DOI: 10.1016/j.snb.2015.01.106 [DOI:10.1016/j.snb.2015.01.106]
28. Zhang Z, Zhang Y, He L, Yang Y, Liu S, Wang M, et al. A feasible synthesis of Mn3 (PO4)2@ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. J. Power Sources. 2015; 284: 170-7. DOI: 10.1016/j.jpowsour.2015.03.011 [DOI:10.1016/j.jpowsour.2015.03.011]
29. Rai SK, Kaur H, Kauldhar BS, Yadav SK. Dual-enzyme metal hybrid crystal for direct transformation of whey lactose into a high-value rare sugar D-tagatose: synthesis, characterization, and a sustainable process. ACS Biomater Sci Eng. 2020; 6(12): 6661-70. DOI: 10.1021/acsbiomaterials.0c00841 [DOI:10.1021/acsbiomaterials.0c00841] [PMID]
30. Gao J, Liu H, Tong C, Pang L, Feng Y, Zuo M, Wei Z, Li J. Hemoglobin- Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor. Sensors and Actuators B: Chemical. 2020; 307: 127628. DOI: 10.1016/j.snb.2019.127628 [DOI:10.1016/j.snb.2019.127628]
31. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011; 172(1): 258-66. DOI: 10.1016/j.cej.2011.05.103 [DOI:10.1016/j.cej.2011.05.103]
32. Guo J, Wang Y, Zhao M. A self-activated nanobiocatalytic cascade system based on an enzyme-inorganic hybrid nanoflower for colorimetric and visual detection of glucose in human serum. Sens. Actuators B Chem. 2019; 284: 45-54. DOI: 10.1016/j.snb.2018.12.102 [DOI:10.1016/j.snb.2018.12.102]
33. Ocsoy I, Dogru E, Usta S. A new generation of flowerlike horseradish peroxides as nanobiocatalyst for superior enzymatic activity. Enzyme Microb Technol. 2015; 75-76: 25-9. DOI: 10.1016/j.enzmictec.2015.04.010 [DOI:10.1016/j.enzmictec.2015.04.010] [PMID]
34. Sharma N, Parhizkar M, Cong W, Mateti S, Kirkland MA, Puri M, et al. Metal ion type significantly affects the morphology but not the activity of lipase-metal-phosphate nanoflowers. RSC Adv. 2017; 7: 25437-43. URL: https://pubs.rsc.org/en/content/articlehtml/2017/ra/c7ra00302a [DOI:10.1039/C7RA00302A]
35. Zhang B, Li P, Zhang H, Fan L, Wang H, Li X, et al. Papain/Zn3(PO4)2 hybrid nanoflower: preparation, characterization and its enhanced catalytic activity asan immobilized enzyme. RSC Adv. 2016; 6(52): 46702-10. DOI: [DOI:10.1039/C6RA05308D]
36. Zhang B, Li P, Zhang H, Wang H, Li X, Tian L, et al. Preparation of lipase/Zn3 (PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem Eng J. 2016; 291: 287-97. DOI: 10.1016/j.cej.2016.01.104 [DOI:10.1016/j.cej.2016.01.104]
37. López-Gallego F, Yate L. Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chem. Commun. 2015; 51(42): 8753-6. DOI: 10.1039/C5CC00318K [DOI:10.1039/C5CC00318K] [PMID]
38. Kim KH, Jeong J-M, Lee SJ, Choi BG, Lee KG. Protein-directed assembly of cobalt phosphate hybrid nanoflowers. J Colloid Interface Sci. 2016; 484: 44-50. DOI: 10.1016/j.jcis.2016.08.059 [DOI:10.1016/j.jcis.2016.08.059] [PMID]
39. Wang S, Ding Y, Chen R, Hu M, Li S, Zhai Q, et al. Multilayer petal-like enzymatic-inorganic hybrid micro-spheres [CPO-(Cu/Co/Cd)3(PO4)2] with high bio-catalytic activity. Chem Eng Res Des. 2018; 134: 52-61. DOI: 10.1016/j.cherd.2018.03.036 [DOI:10.1016/j.cherd.2018.03.036]
40. Li C, Zhao J, Zhang Z, Jiang Y, Bilal M, Jiang Y, et al. Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem Eng J. 2020; 158: 107582. DOI: 10.1016/j.bej.2020.107582 [DOI:10.1016/j.bej.2020.107582]
41. Chen J, Guo Z, Xin Y, Shi Y, Li Y, Gu Z, et al. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides. Enzym Microb Technol. 2021; 146: 109766. DOI: 10.1016/j.enzmictec.2021.109766 [DOI:10.1016/j.enzmictec.2021.109766] [PMID]
42. Batule B, Park K, Kim M, Park H. Ultrafast sonochemical synthesis of protein-inorganic nanoflowers. Int J Nanomedicine. 2015; 10(Spec Iss): 137-42. DOI: 10.2147/IJN.S90274 [DOI:10.2147/IJN.S90274] [PMID] []
43. Chung M, Nguyen TL, Tran TQN, Yoon HH, Kim IT, Kim M. Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell. Appl Surf Sci. 2018; 429: 203-9. DOI: 10.1016/j.apsusc.2017.06.242 [DOI:10.1016/j.apsusc.2017.06.242]
44. Gulmez C, Altinkaynak C, Ozturkler M, Ozdemir N, Atakisi O. Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors. J Biosci Bioeng. 2021; 132(4): 327-36. DOI: 10.1016/j.jbiosc.2021.06.002 [DOI:10.1016/j.jbiosc.2021.06.002] [PMID]
45. Ke C, Fan Y, Chen Y, Xu L, Yan Y. A new lipase-inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv. 2016; 6: 19413-6. DOI: 10.1039/C6RA01564F [DOI:10.1039/C6RA01564F]
46. Jadhav RW, La DD, More VG, Tung Vo H, Nguyen DA, Tran DL, et al. Self-assembled kanamycin antibiotic-inorganic microflowers and their application as a photocatalyst for the removal of organic dyes. Sci Rep 2020; 10: 154. DOI: 10.1038/s41598-019-57044-z [DOI:10.1038/s41598-019-57044-z] [PMID] []
47. Luo Y-K, Song F, Wang X-L, Wang Y-Z. Pure copper phosphate nanostructures with controlled growth: a versatile support for enzyme immobilization CrystEngComm 2017; 19: 2996-3002. DOI: 10.1039/C7CE00466D [DOI:10.1039/C7CE00466D]
48. Gao L, He Q, Xing J, Ge Z. Removal of doxorubicin by magnetic copper phosphate nanoflowers for individual urine source separation. Chemosphere. 2020; 238: 124690. DOI: 10.1016/j.chemosphere.2019.124690 [DOI:10.1016/j.chemosphere.2019.124690] [PMID]
49. Carey AB, Cai W, Gibson CT, Raston CL, Luo X. Shear stress-mediated growth of cupric phosphate nanostructures Crystal Growth & Design 2021; 21: 4579-86. [DOI:10.1021/acs.cgd.1c00453]
50. Vojdanitalab K, Jafari-Nodoushan H, Mojtabavi S, Shokri M, Jahandar H, Faramarzi MA. Instantaneous synthesis and full characterization of organic-inorganic laccase-cobalt phosphate hybrid nanoflowers. Sci Rep. 2022; 12(1): 9297. DOI: 10.1038/s41598-022-13490-w [DOI:10.1038/s41598-022-13490-w] [PMID] []
51. Kiani M, Mojtabavi S, Jafari-Nodoushan H, Tabib SR, Hassannejad N, Faramarzi MA. Fast anisotropic growth of the biomineralized zinc phosphate nanocrystals for a facile and instant construction of laccase@Zn3(PO4)2 hybrid nanoflowers. Int J Biol Macromol. 2022; 204: 520-31. DOI: 10.1016/j.ijbiomac.2022.02.023 [DOI:10.1016/j.ijbiomac.2022.02.023] [PMID]
52. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. Microbial synthesis of flower-shaped gold nanoparticles. Artif Cells Nanomed Biotechnol. 2016; 44(6): 1469-74. DOI: 10.3109/21691401.2015.1041640 [DOI:10.3109/21691401.2015.1041640] [PMID]
53. Lakkakula JR, Matshaya T, Krause RWM. Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mater Sci Eng C Mater Biol Appl. 2017; 70(Pt 1): 169-77. DOI: 10.1016/j.msec.2016.08.073 [DOI:10.1016/j.msec.2016.08.073] [PMID]
54. Bilal M, Asgher M, Shah SZH, Iqbal HM. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int J Biol Macromol. 2019; 135: 677-90. DOI: 10.1016/j.ijbiomac.2019.05.206 [DOI:10.1016/j.ijbiomac.2019.05.206] [PMID]
55. Jiang W, Wang X, Yang J, Han H, Li Q, Tang J. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: a new support for biodiesel synthesis. J Colloid Interface Sci. 2018; 514: 102-7. DOI: 10.1016/j.jcis.2017.12.025 [DOI:10.1016/j.jcis.2017.12.025] [PMID]
56. Bilal M, Fernandes CD, Mehmood T, Nadeem F, Tabassam Q, Ferreira LF. Immobilized lipases-based nano-biocatalytic systems-A versatile platform with incredible biotechnological potential. Int. J. Biol. Macromol. 2021; 175: 108-22. DOI: 10.1016/j.ijbiomac.2021.02.010 [DOI:10.1016/j.ijbiomac.2021.02.010] [PMID]
57. Zhang Y, Sun W, Elfeky NM, Wang Y, Zhao D, Zhou H, et al. Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability. Enzyme Microb Technol. 2020; 132: 109408. DOI: 10.1016/j.enzmictec.2019.109408 [DOI:10.1016/j.enzmictec.2019.109408] [PMID]
58. Feng N, Zhang H, Li Y, Liu Y, Xu L, Wang Y, et al. A novel catalytic material for hydrolyzing cow's milk allergenic proteins: papain-Cu3(PO4)2⋅3H2O-magnetic nanoflowers. Food Chem. 2020; 311: 125911. DOI: 10.1016/j.foodchem.2019.125911 [DOI:10.1016/j.foodchem.2019.125911] [PMID]
59. Guimarães JR, Carballares D, Rocha-Martin J, Tardioli PW, Fernandez-Lafuente R, Stabilization of immobilized lipases by treatment with metallic phosphate salts. Int. J. Biol. Macromol. 2022; 213: 43-54. DOI: 10.1016/j.ijbiomac.2022.05.167 [DOI:10.1016/j.ijbiomac.2022.05.167] [PMID]
60. Talens-Perales D, Fabra MJ, Martínez-Argente L, Marín-Navarro J, Polaina J. Recyclable thermophilic hybrid protein-inorganic nanoflowers for the hydrolysis of milk lactose. Int J Biol Macromol. 2020; 151: 602-8. DOI: 10.1016/j.ijbiomac.2020.02.115 [DOI:10.1016/j.ijbiomac.2020.02.115] [PMID]
61. Routoula E, Patwardhan SV. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol. 2020; 54(2): 647-64. DOI: 10.1021/acs.est.9b03737 [DOI:10.1021/acs.est.9b03737] [PMID]
62. Altinkaynak C, Tavlasoglu S, Kalin R, Sadeghian N, Ozdemir H, Ocsoy I, et al. A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu 2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere. 2017; 182: 122-8. DOI: 10.1016/j.chemosphere.2017.05.012 [DOI:10.1016/j.chemosphere.2017.05.012] [PMID]
63. Fu M, Xing J, Ge Z. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. Sci Total Environ. 2019; 651(Pt 2): 2857-65. DOI: 10.1016/j.scitotenv.2018.10.145 [DOI:10.1016/j.scitotenv.2018.10.145] [PMID]
64. Zhang L, Ma Y, Wang C, Wang Z, Chen X, Li M, et al. Application of dual-enzyme nanoflower in the epoxidation of alkenes. Process Biochem. 2018; 74: 103-7. DOI: 10.1016/j.procbio.2018.08.029 [DOI:10.1016/j.procbio.2018.08.029]
65. Zhong L, Feng Y, Hu H, Xu J, Wang Z, Du Y,et al. Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production. J. Colloid Interface Sci. 2021; 602: 426-36. DOI: 10.1016/j.jcis.2021.06.017 [DOI:10.1016/j.jcis.2021.06.017] [PMID]
66. Somturk B, Hancer M, Ocsoy I, Ozdemir N. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans. 2015; 44: 13845-52. DOI: 10.1039/C5DT01250C [DOI:10.1039/C5DT01250C] [PMID]
67. Altinkaynak C, Yilmaz I, Koksal Z, Ozdemir H, Ocsoy I, Ozdemir N. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int J Biol Macromol. 2016; 84: 402-9. DOI: 10.1016/j.ijbiomac.2015.12.018 [DOI:10.1016/j.ijbiomac.2015.12.018] [PMID]
68. Bu S, Wang K, Ju C, Han Y, Li Z, Du P, et al. A pregnancy test strip for detection of pathogenic bacteria by using concanavalin A-human chorionic gonadotropin-Cu3(PO4)2 hybrid nanoflowers, magnetic separation, and smartphone readout. Microchim Acta. 2018; 185(10): 464. DOI: 10.1007/s00604-018-2968-2 [DOI:10.1007/s00604-018-2968-2] [PMID]
69. Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, et al. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale. 2014; 6(1): 255-62. DOI: 10.1039/C3NR04425D [DOI:10.1039/C3NR04425D] [PMID]
70. Wang C, Tan R, Wang Q. One-step synthesized flower-like materials used for sensitively detecting amyloid precursor protein. Anal Bioanal Chem.. 2018; 410(26): 6901-9. DOI: 10.1007/s00216-018-1293-2 [DOI:10.1007/s00216-018-1293-2] [PMID]
71. Girigoswami A, Ramalakshmi M, Akhtar N, Metkar SK, Girigoswami K. ZnO Nanoflower petals mediated amyloid degradation-An in vitro electrokinetic potential approach.. Mater Sci Eng C Mater Biol Appl. 2019; 101: 169-78. DOI: 10.1016/j.msec.2019.03.086 [DOI:10.1016/j.msec.2019.03.086] [PMID]
72. Lei Y-M, Zhou J, Chai Y-Q, Zhuo Y, Yuan R. SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Anal Chem. 2018; 90(20): 12270-7. DOI: 10.1021/acs.analchem.8b03623 [DOI:10.1021/acs.analchem.8b03623] [PMID]
73. Arduini F, Cinti S, Scognamiglio V, Moscone D. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Mikrochim. Acta. 2016; 183(7): 2063-83. DOI: 10.1007/s00604-016-1858-8 [DOI:10.1007/s00604-016-1858-8]
74. Piro B, Reisberg S. Recent advances in electrochemical immunosensors. Sensors. 2017; 17(4): 794. DOI: 10.3390/s17040794 [DOI:10.3390/s17040794] [PMID] []
75. Pandey CM, Sumana G, Tiwari I. Nanostructuring of hierarchical 3D cystine flowers for high-performance electrochemical immunosensor. Biosensors and Bioelectronics. 2014; 61: 328-35. DOI: 10.1016/j.bios.2014.05.015 [DOI:10.1016/j.bios.2014.05.015] [PMID]
76. Fang Y, Wang S, Liu Y, Xu Z, Zhang K, Guo Y. Development of Cu nanoflowers modified the flexible needle-type microelectrode and its application in continuous monitoring glucose in vivo. Biosens Bioelectron. 2018; 110: 44-51. DOI: 10.1016/j.bios.2018.03.024 [DOI:10.1016/j.bios.2018.03.024] [PMID]
77. Y. Li, G. Xie, J. Qiu, D. Zhou, D. Gou, Y. Tao, Y. Li, H. Chen, A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sensors Actuators, B Chem. 2018; 258: 803-812. DOI: 10.1016/j.snb.2017.11.155 [DOI:10.1016/j.snb.2017.11.155]
78. Mojtabavi S, Khoshayand MR, Fazeli MR, Samadi N, Faramarzi MA. Combination of thermal and biological treatments for bio-removal and detoxification of some recalcitrant synthetic dyes by betaine-induced thermostabilized laccase.. Environ Technol Innov. 2020; 20: 101046. DOI: [DOI:10.1016/j.eti.2020.101046]
79. Park KS, Batule BS, Chung M, Kang KS, Park TJ, Kim MI, et al. A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers. J Mater Chem B. 2017; 5(12): 2231-4. DOI: 10.1039/c6tb03047e [DOI:10.1039/C6TB03047E] [PMID]
80. Wu T, Yang Y, Cao Y, Song Y, Xu L-P, Zhang X, et al. Bioinspired DNA-inorganic hybrid nanoflowers combined with a personal glucose meter for onsite detection of miRNA. ACS Appl Mater Interfaces. 2018; 10(49): 42050-7. DOI: 10.1021/acsami.8b15917 [DOI:10.1021/acsami.8b15917] [PMID]
81. Yilmaz E, Ocsoy I, Ozdemir N, Soylak M. Bovine serum albumin-Cu (II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples. Anal Chim Acta. 2016; 906: 110-7. DOI: 10.1016/j.aca.2015.12.001 [DOI:10.1016/j.aca.2015.12.001] [PMID]
82. Jin Y, Li Z, Liu H, Chen S, Wang F, Wang L, et al. Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. NPG Asia Mater. 2017; 9: e365-e. DOI: 10.1038/am.2017.34 [DOI:10.1038/am.2017.34]
83. Celik C, Ildiz N, Ocsoy I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci. Rep. 2020; 10(1): 2903. DOI: 10.1038/s41598-020-59699-5 [DOI:10.1038/s41598-020-59699-5] [PMID] []
84. Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, et al. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed Engl. 2014; 53(23): 5821-6. DOI: 10.1002/anie.201400323 [DOI:10.1002/anie.201400323] [PMID]
85. Cheng H, Hong S, Wang Z, Sun N, Wang T, Zhang Y, et al. Self-assembled RNAi nanoflowers via rolling circle transcription for aptamer-targeted siRNA delivery. J. Mater. Chem. B. 2018; 6: 4638-44. DOI: [DOI:10.1039/C8TB00758F] [PMID]
86. - Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev. 2018; 134: 3-21. DOI: 10.1016/j.addr.2018.04.007 [DOI:10.1016/j.addr.2018.04.007] [PMID]
87. Ni Q, Zhang F, Zhang Y, Zhu G, Wang Z, Teng Z, et al. In situ shRNA synthesis on DNA-polylactide nanoparticles to treat multidrug resistant breast cancer. Adv Mater. 2018; 30(10): 1705737. DOI: 10.1002/adma.201705737 [DOI:10.1002/adma.201705737] [PMID]
88. Hao Y, Li H, Cao Y, Chen Y, Lei M, Zhang T, et al. Uricase and horseradish peroxidase hybrid CaHPO4 nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J Biomed Nanotechnol. 2019; 15(5): 951-65. DOI: 10.1166/jbn.2019.2752 [DOI:10.1166/jbn.2019.2752] [PMID]
89. Xiao Z, Xu C, Jiang X, Zhang W, Peng Y, Zou R, et al. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells. Nano Res. 2016; 9(7): 1934-47. DOI: 10.1007/s12274-016-1085-y [DOI:10.1007/s12274-016-1085-y]
90. Ye J, Zhai X, Chen L, Guo W, Gu T, Shi Y,et al. Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: Mechanism and application of the enhanced energy storage. J. Energy Chem. 2021; 62: 252-61. DOI: 10.1016/j.jechem.2021.03.030 [DOI:10.1016/j.jechem.2021.03.030]
91. Cheng N, Song Y, Shi Q, Du D, Liu D, Luo Y,et al. Au@ Pd nanopopcorn and aptamer nanoflower assisted lateral flow strip for thermal detection of exosomes. Anal Chem.2019; 91(21): 13986-93. DOI: 10.1021/acs.analchem.9b03562 [DOI:10.1021/acs.analchem.9b03562] [PMID]
92. Yin T, Li Y, Bian K, Zhu R, Liu Z, Niu K,et al. Self-assembly synthesis of vapreotide‑gold hybrid nanoflower for photothermal antitumor activity. Mater Sci Eng C Mater Biol Appl. 2018; 93: 716-23. DOI: 10.1016/j.msec.2018.08.017 [DOI:10.1016/j.msec.2018.08.017] [PMID]
93. Jiang T, Yin N, Liu L, Song J, Huang Q, Zhu L,et al. A Au nanoflower@ SiO2@ CdTe/CdS/ZnS quantum dot multi-functional nanoprobe for photothermal treatment and cellular imaging. RSC Advances. 2014; 4(45): 23630-6. DOI: 10.1039/c4ra02965h [DOI:10.1039/C4RA02965H]
94. Sun G, Yang S, Cai H, Shu Y, Han Q, Wang B, et al. Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment. J Colloid Interface Sci. 2019; 549: 50-62. DOI: 10.1016/j.jcis.2019.04.047 [DOI:10.1016/j.jcis.2019.04.047] [PMID]
95. Ahn S, Singh P, Jang M, Kim Y-J, Castro-Aceituno V, Simu SY, et al. Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264 7 macrophages via NF-κB and AP-1 pathways. Colloids Surf B Biointerfaces. 2018; 162:423-428. DOI: 10.1016/j.colsurfb.2017.09.053 [DOI:10.1016/j.colsurfb.2017.09.053] [PMID]
96. Yan T, Cheng F, Wei X, Huang Y, He J. Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr Polym. 2017; 170: 271-80. DOI: 10.1016/j.carbpol.2017.04.080 [DOI:10.1016/j.carbpol.2017.04.080] [PMID]
97. Fatima SW, Imtiyaz K, Rizvi MMA, Khare SK. Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC adv. 2021; 11(55): 34613-30. DOI: 10.1039/d1ra04513j [DOI:10.1039/D1RA04513J] [PMID] []
98. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010; 11(5): 373-84. DOI: 10.1038/ni.1863 [DOI:10.1038/ni.1863] [PMID]
99. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014; 14(11): 736-46. DOI: 10.1038/nrc3818 [DOI:10.1038/nrc3818] [PMID]
100. Zhu G, Mei L, Vishwasrao HD, Jacobson O, Wang Z, Liu Y, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat Commun. 2017; 8(1): 1482.DOI: 10.1038/s41467-017-01386-7 [DOI:10.1038/s41467-017-01386-7] [PMID] []
101. Guo J, Wang Y, Zhao M. Target-directed functionalized ferrous phosphate-carbon dots fluorescent nanostructures as peroxidase mimetics for cancer cell detection and ROS-mediated therapy. Sens. Actuators B Chem. 2019; 297: 126739. DOI: 10.1016/j.snb.2019.126739 [DOI:10.1016/j.snb.2019.126739]
102. Lee I, Cheon HJ, Adhikari MD, Tran TD, Yeon K-M, Kim MI, et al. Glucose oxidase-copper hybrid nanoflowers embedded with magnetic nanoparticles as an effective antibacterial agent.. Int. J. Biol. Macromol. 2020; 155: 1520-31.DOI: 10.1016/j.ijbiomac.2019.11.129 [DOI:10.1016/j.ijbiomac.2019.11.129] [PMID]
103. Koca FD. Preparation of thymol incorporated organic-inorganic hybrid nanoflowers as a novel fenton agent with intrinsic catalytic and antimicrobial activities. Inorganic and Nano-Metal Chemistry. 2022; 52(2): 322-7. URL: https://www.tandfonline.com/doi/abs/10.1080/24701556.2021.1980024?journalCode=lsrt21 [DOI:10.1080/24701556.2021.1980024]
104. Celik C, Ildiz N, Ocsoy I. Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci Rep. 2020; 10(1): 2903. DOI: 10.1038/s41598-020-59699-5 [DOI:10.1038/s41598-020-59699-5] [PMID] []
105. Baldemir A, Kose NB, Ildız N, ˙Ilgün S, Yusufbeyo˘glu S, Yilmaz V, et al. Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Adv. 2017; 7: 44303-8. DOI: 10.1039/C7RA07618E [DOI:10.1039/C7RA07618E]
106. Guo W, Gu Y, Bao J, Wang B, Wu D, Li Y, Lu L. Composition-tunable synthesis of Pt-Cu dendritic nanomaterials by ultrasound-assisted approach for highly efficient methanol oxidation. Mater. Lett. 2023; 335: 133778. DOI: 10.1016/j.matlet.2022.133778 [DOI:10.1016/j.matlet.2022.133778]
107. Emami S, Foroumadi A, Faramarzi MA, Samadi N. Synthesis and antibacterial activity of quinolone‐based compounds containing a coumarin moiety. Arch. Pharm. 2008; 341(1): 42-8. DOI: 10.1002/ardp.200700090 [DOI:10.1002/ardp.200700090] [PMID]
108. Ahmad W, Ur Rahman A, Ahmad I, Yaseen M, Mohamed Jan B, Stylianakiset al. Oxidative desulfurization of petroleum distillate fractions using manganese dioxide supported on magnetic reduced graphene oxide as catalyst. Nanomaterials 2021; 11(1): 203. DOI: 10.3390/nano11010203 [DOI:10.3390/nano11010203] [PMID] []
109. Zhang L, Song S, Yang N, Tantai X, Xiao X, Jiang B, Sun Y. Porous hybrid nanoflower self-assembled from polyoxometalate and polyionene for efficient oxidative desulfurization. Ind. Eng. Chem. Res. 2019; 58(9): 3618-29. DOI: 10.1021/acs.iecr.8b05905 [DOI:10.1021/acs.iecr.8b05905]
110. Rezayaraghi F, Jafari-Nodoushan H, Mojtabavi S, Golshani S, Jahandar H, Faramarzi MA. Hybridization of laccase with dendrimer-grafted silica-coated hercynite-copper phosphate magnetic hybrid nanoflowers and its application in bioremoval of gemifloxacin. Environ. Sci. Pollut. Res. Int. 2022; 29(59): 89255-72. DOI: 10.1007/s11356-022-21959-4 [DOI:10.1007/s11356-022-21959-4] [PMID]
111. Mojtabavi S, Khoshayand MR, Fazeli MR, Samadi N, Faramarzi MA. Combination of thermal and biological treatments for bio-removal and detoxification of some recalcitrant synthetic dyes by betaine-induced thermostabilized laccase. Environ. Technol. Innovation. 2020; 20: 101046. DOI: 10.1016/j.eti.2020.101046 [DOI:10.1016/j.eti.2020.101046]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Scientific Research in Medical Sciences

Designed & Developed by : Yektaweb