1. Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003; 258(1): 1-19. DOI: 10.1016/s0012-1606(03)00112-x [
DOI:10.1016/S0012-1606(03)00112-X] [
PMID]
2. Tan CMJ, Lewandowski AJ. The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 2020; 47(5): 373-86. DOI: 10.1159/000501906 [
DOI:10.1159/000501906] [
PMID] [
]
3. Khatami M, Ghazinader D, Ahmadi F, Heidari MM, Hadadzadeh M, Namnabat M. Novel missense mutation in NKX2. 6 gene (c. 389 G> C, Arg130Pro) as a potentially pathogenic variant in pediatric patients with congenital heart disease. Gene Rep. 2023; 33: 101819. DOI: 10.1016/j.genrep.2023.101819 [
DOI:10.1016/j.genrep.2023.101819]
4. Sun R, Liu M, Lu L, Zheng Y, Zhang P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 2015; 72(3): 857-60. DOI: 10.1007/s12013-015-0551-6 [
DOI:10.1007/s12013-015-0551-6] [
PMID]
5. Dianatpour S, Khatami M, Heidari MM, Hadadzadeh M. Novel point mutations of CITED2 gene are associated with non-familial congenital heart disease (CHD) in sporadic pediatric patients. Appl Biochem Biotechnol. 2020; 190(3): 896-906. DOI: 10.1007/s12010-019-03125-8 [
DOI:10.1007/s12010-019-03125-8] [
PMID]
6. Khatami M, Mazidi M, Taher S, Heidari MM, Hadadzadeh M. Novel point mutations in the NKX2. 5 gene in pediatric patients with non-familial congenital heart disease. Medicina (Kaunas). 2018; 54(3): 46. DOI: 10.3390/medicina54030046 [
DOI:10.3390/medicina54030046] [
PMID] [
]
7. Heidari MM, Khatami M, Kamalipour A, Kalantari M, Movahed M, Emmamy MH, et al. Mitochondrial mutations in protein coding genes of respiratory chain including complexes IV, V, and mt-tRNA genes are associated risk factors for congenital heart disease. EXCLI. 2022; 21: 1306-30. DOI: 10.17179/excli2022-5298
8. Kučienė R, Dulskienė V. Selected environmental risk factors and congenital heart defects. Medicina (Kaunas). 2008; 44(11): 827-32. URL: https://pubmed.ncbi.nlm.nih.gov/19124958/ [
DOI:10.3390/medicina44110104] [
PMID]
9. Rao PS. Management of congenital heart disease: state of the art-part II-cyanotic heart defects. Children. 2019; 6(4): 54. DOI: 10.3390/children6040054 [
DOI:10.3390/children6040054] [
PMID] [
]
10. Khatami M, Heidari MM, Kazeminasab F, Bidaki RZ. Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects. J Cardiovasc Thorac Res. 2018; 10(1): 41-5. DOI: 10.15171/jcvtr.2018.07 [
DOI:10.15171/jcvtr.2018.07] [
PMID] [
]
11. Shah G, Singh M, Pandey T, Kalakheti B, Bhandari G. Incidence of congenital heart disease in tertiary care hospital. Kathmandu Univ Med J (KUMJ). 2008; 6(1): 33-6. PMID: 18604112
12. Audain E, Wilsdon A, Breckpot J, Izarzugaza JM, Fitzgerald TW, Kahlert A-K, et al. Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease. PLoS Genet. 2021; 17(7): e1009679. DOI: 10.1371/journal.pgen.1009679 [
DOI:10.1371/journal.pgen.1009679] [
PMID] [
]
13. Williams K, Carson J, Lo C. Genetics of congenital heart disease. Biomolecules. 2019; 9(12): 879. DOI: 10.3390/biom9120879 [
DOI:10.3390/biom9120879] [
PMID] [
]
14. Klena NT, Gibbs BC, Lo CW. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb Perspect Biol. 2017; 9(8): a028266. DOI: 10.1101/cshperspect.a028266 [
DOI:10.1101/cshperspect.a028266] [
PMID] [
]
15. Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol. 2022; 19(4): 211-27. DOI: 10.1038/s41569-021-00635-z [
DOI:10.1038/s41569-021-00635-z] [
PMID] [
]
16. Gabriel GC, Young CB, Lo CW, editors. Role of cilia in the pathogenesis of congenital heart disease. Semin Cell Dev Biol. 2021: 110: 2-10. Elsevier. DOI: 10.1016/j.semcdb.2020.04.017 [
DOI:10.1016/j.semcdb.2020.04.017] [
PMID] [
]
17. Pereira R, Oliveira M, Santos R, Oliveira E, Barbosa T, Santos T, et al. Characterization of CCDC103 expression profiles: further insights in primary ciliary dyskinesia and in human reproduction. J Assist Reprod Genet. 2019; 36(8): 1683-700. DOI: 10.1007/s10815-019-01509-7 [
DOI:10.1007/s10815-019-01509-7] [
PMID] [
]
18. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012; 44(6): 714-9. DOI: 10.1038/ng.2277 [
DOI:10.1038/ng.2277] [
PMID] [
]
19. Zubair M, Khan R, Ma A, Hameed U, Khan M, Abbas T, et al. A recurrent homozygous missense mutation in CCDC103 causes asthenoteratozoospermia due to disorganized dynein arms. Asian J Androl. 2022; 24(3): 255-9. DOI: 10.4103/aja2021122 [
DOI:10.4103/aja2021122] [
PMID] [
]
20. Shoemark A, Moya E, Hirst RA, Patel MP, Robson EA, Hayward J, et al. High prevalence of CCDC103 p. His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax. 2018; 73(2): 157-66. DOI: 10.1136/thoraxjnl-2017-209999 [
DOI:10.1136/thoraxjnl-2017-209999] [
PMID] [
]
21. Falkenberg L. The role of CCDC103 in the cytoskeletal dynamics, metabolic regulation, and functional maturation of zebrafish and human neutrophils [Ph.D. dissertation], University of Cincinnati; 2022, pp: 161-205. URI: http://rave.ohiolink.edu/etdc/view?acc_num=ucin165953355279737.
22. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med. 2008; 10(4): 294-300. DOI: 10.1097/GIM.0b013e31816b5cae [
DOI:10.1097/GIM.0b013e31816b5cae] [
PMID]
23. Gabriel GC, Lo CW, editors. Left-right patterning in congenital heart disease beyond heterotaxy. Am J Med Genet C Semin Med Genet; 2020; 184(1): 90-96: Wiley Online Library. DOI: 10.1002/ajmg.c.31768 [
DOI:10.1002/ajmg.c.31768] [
PMID] [
]
24. Williams KA. Ciliary genes contribute to a complex genetic model of congenital heart disease [Ph.D. dissertation], University of Pittsburgh; 2021, pp: 10-103. URI: http://d-scholarship.pitt.edu/id/eprint/42057.
25. Willaredt MA, Gorgas K, Gardner HA, Tucker KL. Multiple essential roles for primary cilia in heart development. Cilia. 2012; 1(1): 23. DOI: 10.1186/2046-2530-1-23 [
DOI:10.1186/2046-2530-1-23] [
PMID] [
]
26. Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, et al. Primary cilia defects causing mitral valve prolapse. Sci Transl Med. 2019; 11(493): eaax0290. DOI: 10.1126/scitranslmed.aax0290 [
DOI:10.1126/scitranslmed.aax0290] [
PMID] [
]
27. Pérez Matos AJ, Oomen T, van Tintelen JP. The Genetics of Mitral Valve Prolapse. Clin Genet. 2020: 72(4): 431-7. DOI: 10.1111/j.1399-0004.2007.00865.x [
DOI:10.1111/j.1399-0004.2007.00865.x] [
PMID]
28. Liu C, Cao R, Xu Y, Li T, Li F, Chen S, et al. Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects. Genome Med. 2018; 10(1): 1-13. DOI: 10.1186/s13073-018-0549-y [
DOI:10.1186/s13073-018-0549-y] [
PMID] [
]