Research code: IR.YAZD.REC.1402.048
Ethics code: IR.YAZD.REC.1402.048


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghadambarati Z, Khatami M, Heidari M M, HadadZadeh M, Ghorbanian R. Genomic and bioinformatics analysis of nucleotide changes in the coding regions of the CCDC103 gene in patients with Tetralogy of Fallot (TOF): A type of Congenital Heart Defects. Journals of Birjand University of Medical Sciences 2024; 31 (1) :48-67
URL: http://journal.bums.ac.ir/article-1-3386-en.html
1- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
2- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran , m.khatami@yazd.ac.ir
3- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Abstract:   (416 Views)
Background and Aims: Tetralogy of Fallot (TOF) is one of infants' most common types of complex congenital heart defects (CHD). Several molecular mechanisms may play a role in its development, such as mutations in cardiac gene network components, cardiac gene regulatory pathways, dysfunction of cilia-expressing genes, and dysfunction of genes determining the left and right axis of the heart. The present study aimed to investigate the nucleotide changes of the CCDC103 gene and its relationship with CHD of the TOF type.
Materials and Methods: The present work was conducted for the first time in Iran as a case-control study on 85 children with TOF. The control group involved 56 healthy children without a family history of heart disorders. Touchdown polymerase chain reaction (PCR) and Sanger sequencing were used to evaluate point mutations in the CCDC103 gene. Moreover, bioinformatics databases were employed to predict the impact of nucleotide changes on protein structure and function.
Results: A total of five heterozygous single nucleotide changes were detected in this gene (three missense mutations: p.S115R, p.C191R, p.M201V, a synonymous change without amino acid change, and a change in the 3'-UTR region). In addition, bioinformatics results predicted that p.C191R mutation is pathogenic and harmful.
Conclusion: The results indicated that in addition to the genes known in the pathogenesis of TOF, changes in the CCDC103 gene in the ciliary signaling pathway can play a role in causing heart defects.
Full-Text [PDF 1302 kb]   (282 Downloads)    
Type of Study: Original Article | Subject: Medical Genetics
Received: 2024/01/27 | Accepted: 2024/04/20 | ePublished ahead of print: 2024/05/18 | ePublished: 2024/06/4

References
1. Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003; 258(1): 1-19. DOI: 10.1016/s0012-1606(03)00112-x [DOI:10.1016/S0012-1606(03)00112-X] [PMID]
2. Tan CMJ, Lewandowski AJ. The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 2020; 47(5): 373-86. DOI: 10.1159/000501906 [DOI:10.1159/000501906] [PMID] []
3. Khatami M, Ghazinader D, Ahmadi F, Heidari MM, Hadadzadeh M, Namnabat M. Novel missense mutation in NKX2. 6 gene (c. 389 G> C, Arg130Pro) as a potentially pathogenic variant in pediatric patients with congenital heart disease. Gene Rep. 2023; 33: 101819. DOI: 10.1016/j.genrep.2023.101819 [DOI:10.1016/j.genrep.2023.101819]
4. Sun R, Liu M, Lu L, Zheng Y, Zhang P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 2015; 72(3): 857-60. DOI: 10.1007/s12013-015-0551-6 [DOI:10.1007/s12013-015-0551-6] [PMID]
5. Dianatpour S, Khatami M, Heidari MM, Hadadzadeh M. Novel point mutations of CITED2 gene are associated with non-familial congenital heart disease (CHD) in sporadic pediatric patients. Appl Biochem Biotechnol. 2020; 190(3): 896-906. DOI: 10.1007/s12010-019-03125-8 [DOI:10.1007/s12010-019-03125-8] [PMID]
6. Khatami M, Mazidi M, Taher S, Heidari MM, Hadadzadeh M. Novel point mutations in the NKX2. 5 gene in pediatric patients with non-familial congenital heart disease. Medicina (Kaunas). 2018; 54(3): 46. DOI: 10.3390/medicina54030046 [DOI:10.3390/medicina54030046] [PMID] []
7. Heidari MM, Khatami M, Kamalipour A, Kalantari M, Movahed M, Emmamy MH, et al. Mitochondrial mutations in protein coding genes of respiratory chain including complexes IV, V, and mt-tRNA genes are associated risk factors for congenital heart disease. EXCLI. 2022; 21: 1306-30. DOI: 10.17179/excli2022-5298
8. Kučienė R, Dulskienė V. Selected environmental risk factors and congenital heart defects. Medicina (Kaunas). 2008; 44(11): 827-32. URL: https://pubmed.ncbi.nlm.nih.gov/19124958/ [DOI:10.3390/medicina44110104] [PMID]
9. Rao PS. Management of congenital heart disease: state of the art-part II-cyanotic heart defects. Children. 2019; 6(4): 54. DOI: 10.3390/children6040054 [DOI:10.3390/children6040054] [PMID] []
10. Khatami M, Heidari MM, Kazeminasab F, Bidaki RZ. Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects. J Cardiovasc Thorac Res. 2018; 10(1): 41-5. DOI: 10.15171/jcvtr.2018.07 [DOI:10.15171/jcvtr.2018.07] [PMID] []
11. Shah G, Singh M, Pandey T, Kalakheti B, Bhandari G. Incidence of congenital heart disease in tertiary care hospital. Kathmandu Univ Med J (KUMJ). 2008; 6(1): 33-6. PMID: 18604112
12. Audain E, Wilsdon A, Breckpot J, Izarzugaza JM, Fitzgerald TW, Kahlert A-K, et al. Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease. PLoS Genet. 2021; 17(7): e1009679. DOI: 10.1371/journal.pgen.1009679 [DOI:10.1371/journal.pgen.1009679] [PMID] []
13. Williams K, Carson J, Lo C. Genetics of congenital heart disease. Biomolecules. 2019; 9(12): 879. DOI: 10.3390/biom9120879 [DOI:10.3390/biom9120879] [PMID] []
14. Klena NT, Gibbs BC, Lo CW. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb Perspect Biol. 2017; 9(8): a028266. DOI: 10.1101/cshperspect.a028266 [DOI:10.1101/cshperspect.a028266] [PMID] []
15. Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol. 2022; 19(4): 211-27. DOI: 10.1038/s41569-021-00635-z [DOI:10.1038/s41569-021-00635-z] [PMID] []
16. Gabriel GC, Young CB, Lo CW, editors. Role of cilia in the pathogenesis of congenital heart disease. Semin Cell Dev Biol. 2021: 110: 2-10. Elsevier. DOI: 10.1016/j.semcdb.2020.04.017 [DOI:10.1016/j.semcdb.2020.04.017] [PMID] []
17. Pereira R, Oliveira M, Santos R, Oliveira E, Barbosa T, Santos T, et al. Characterization of CCDC103 expression profiles: further insights in primary ciliary dyskinesia and in human reproduction. J Assist Reprod Genet. 2019; 36(8): 1683-700. DOI: 10.1007/s10815-019-01509-7 [DOI:10.1007/s10815-019-01509-7] [PMID] []
18. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012; 44(6): 714-9. DOI: 10.1038/ng.2277 [DOI:10.1038/ng.2277] [PMID] []
19. Zubair M, Khan R, Ma A, Hameed U, Khan M, Abbas T, et al. A recurrent homozygous missense mutation in CCDC103 causes asthenoteratozoospermia due to disorganized dynein arms. Asian J Androl. 2022; 24(3): 255-9. DOI: 10.4103/aja2021122 [DOI:10.4103/aja2021122] [PMID] []
20. Shoemark A, Moya E, Hirst RA, Patel MP, Robson EA, Hayward J, et al. High prevalence of CCDC103 p. His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax. 2018; 73(2): 157-66. DOI: 10.1136/thoraxjnl-2017-209999 [DOI:10.1136/thoraxjnl-2017-209999] [PMID] []
21. Falkenberg L. The role of CCDC103 in the cytoskeletal dynamics, metabolic regulation, and functional maturation of zebrafish and human neutrophils [Ph.D. dissertation], University of Cincinnati; 2022, pp: 161-205. URI: http://rave.ohiolink.edu/etdc/view?acc_num=ucin165953355279737.
22. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med. 2008; 10(4): 294-300. DOI: 10.1097/GIM.0b013e31816b5cae [DOI:10.1097/GIM.0b013e31816b5cae] [PMID]
23. Gabriel GC, Lo CW, editors. Left-right patterning in congenital heart disease beyond heterotaxy. Am J Med Genet C Semin Med Genet; 2020; 184(1): 90-96: Wiley Online Library. DOI: 10.1002/ajmg.c.31768 [DOI:10.1002/ajmg.c.31768] [PMID] []
24. Williams KA. Ciliary genes contribute to a complex genetic model of congenital heart disease [Ph.D. dissertation], University of Pittsburgh; 2021, pp: 10-103. URI: http://d-scholarship.pitt.edu/id/eprint/42057.
25. Willaredt MA, Gorgas K, Gardner HA, Tucker KL. Multiple essential roles for primary cilia in heart development. Cilia. 2012; 1(1): 23. DOI: 10.1186/2046-2530-1-23 [DOI:10.1186/2046-2530-1-23] [PMID] []
26. Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, et al. Primary cilia defects causing mitral valve prolapse. Sci Transl Med. 2019; 11(493): eaax0290. DOI: 10.1126/scitranslmed.aax0290 [DOI:10.1126/scitranslmed.aax0290] [PMID] []
27. Pérez Matos AJ, Oomen T, van Tintelen JP. The Genetics of Mitral Valve Prolapse. Clin Genet. 2020: 72(4): 431-7. DOI: 10.1111/j.1399-0004.2007.00865.x [DOI:10.1111/j.1399-0004.2007.00865.x] [PMID]
28. Liu C, Cao R, Xu Y, Li T, Li F, Chen S, et al. Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects. Genome Med. 2018; 10(1): 1-13. DOI: 10.1186/s13073-018-0549-y [DOI:10.1186/s13073-018-0549-y] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Scientific Research in Medical Sciences

Designed & Developed by : Yektaweb