Volume 28, Issue 4 (January 2021)                   J Birjand Univ Med Sci. 2021, 28(4): 307-321 | Back to browse issues page

Research code: 5596
Ethics code: IR.BUMS.REC.1399.549


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sedighi M, Shakibaie M. The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles. Journals of Birjand University of Medical Sciences 2021; 28 (4) :307-321
URL: http://journal.bums.ac.ir/article-1-3044-en.html
1- Department of Nanomedicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
2- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran , shakibaie_m@yahoo.com
Full-Text [PDF 595 kb]   (800 Downloads)     |   Abstract (HTML)  (2324 Views)
Full-Text:   (1034 Views)
Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticle complexes. Cells react after exposure with these complexes. since, the biological fate and functions of nanomaterials are determined by physiological responses to protein -nanoparticle complexes in this article, we aimed to review some studies about the effects of the protein profiles and physicochemical characteristics of nanoparticles in the biological environment on the formation of protein corona and subsequent the biological responses upon exposure to nanoparticles. Also, some used methods for of protein corona analysis has been reviewed. It has been shown that the biological impacts of protein corona may be both constructive and/or destructive in the biomedical applications of nanomaterials. The protein corona–cell interactions can facilitate targeted delivery and cellular absorption of therapeutic nanomaterials and also, they mitigate the unfavorable cytotoxic effects of nanoparticles. On the other hand, these interactions may cause rapid clearance of nanoparticles from the body as well as the activation of undesirable inflammatory responses. Hence, the study of the formation mechanism and biological effects of protein corona plays an important role in the design of nanoparticles with specific physicochemical properties proportional with their intended biological activity.
منابع:
1- Park SJ. Protein–nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int J Nanomedicine. 2020; 15: 5783–5802. DOI: 10.2147/IJN.S254808
2- Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012; 7(12): 779-86. DOI: 10.1038/nnano.2012.207
3- Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B. 2014; 2(15): 2060-83. DOI: 10.1039/C3TB21526A
4- Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021; 25(1): 1-18. DOI: 10.1186/s40824-021-00212-y
5- Prapainop K, Witter DP, Wentworth Jr P. A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc. 2012; 134(9): 4100-3. DOI: 10.1021/ja300537u
6- Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011; 6(1): 39-44. DOI: 10.1038/nnano.2010.250
7- Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. Molecular interaction of poly (acrylic acid) gold nanoparticles with human fibrinogen. ACS nano. 2012; 6(10): 8962-9. DOI: 10.1021/nn3029953
8- Sedighi M, Rahimi F, Shahbazi M-A, Rezayan AH, Kettiger H, Einfalt T, et al. Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Appl. Bio Mater. 2020; 3(1): 239-51. DOI: 10.1021/acsabm.9b00772
9- Dell'Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PloS one. 2010; 5(6): e10949. DOI: 10.1371/journal.pone.0010949
10- Hamad-Schifferli K. How can we exploit the protein corona? Nanomedicine (Lond). 2013; 8(1): 1-3. DOI: 10.2217/nnm.12.179
11- Lynch I, Dawson KA. Protein-nanoparticle interactions. Nanotoday. 2008; 3(1-2): 40-7. DOI: 10.1016/S1748-0132(08)70014-8.
12- Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009; 8(7): 543-57. DOI: 10.1038/nmat2442
13- Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles.Angew Chem Int Ed Engl. 2007; 46(30): 5754-6. DOI: 10.1002/anie.200700465
14- Kuznetsova N, Vodovozova E. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry (Mosc). 2014; 79(8): 797-804. DOI: 10.1134/S0006297914080070
15- Vroman L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature. 1962; 196(4853): 476-7. DOI: 10.1038/196476a0
16- Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B Biointerfaces. 2013; 103: 395-404. DOI: 10.1016/j.colsurfb.2012.10.039
17- Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics. 2011; 11(23): 4569-77. DOI: 10.1002/pmic.201100037
18- Ferreira SA, Oslakovic C, Cukalevski R, Frohm B, Dahlbäck B, Linse S, et al. Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochim Biophys Acta. 2012; 1820(7): 1043-51. DOI: 10.1016/j.bbagen.2012.04.015
19- Sedighi M, Sieber S, Rahimi F, Shahbazi M-A, Rezayan AH, Huwyler J, et al. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv Transl Res. 2019; 9(1): 404-13. DOI: 10.1007/s13346-018-0587-4
20- Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010; 132(16): 5761-8. DOI: 10.1021/ja910675v
21- Tellechea E, Wilson KJ, Bravo E, Hamad-Schifferli K. Engineering the interface between glucose oxidase and nanoparticles. Langmuir. 2012; 28(11): 5190-200. DOI: 10.1021/la2050866
22- Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009; 61(6): 428-37. DOI: 10.1016/j.addr.2009.03.009
23- Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010; 28(12): 1300-3. DOI: 10.1038/nbt.1696
24- Schleh C, Rothen-Rutishauser B, Kreyling WG. The influence of pulmonary surfactant on nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2011; 77(3): 350-2. DOI: 10.1016/j.ejpb.2010.12.025
25- Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012; 41(7): 2780-99. DOI: 10.1039/C1CS15233E
26- Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev Jr, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011; 5(9): 7155-67. DOI: 10.1021/nn201950e
27- Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S, et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano. 2013; 7(3): 1974-89. DOI: 10.1021/nn400409h
28- Mahmoudi M, Monopoli MP, Rezaei M, Lynch I, Bertoli F, McManus J, et al. The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. ChemBioChem. 2013; 14(5): 568-72. DOI: 10.1002/cbic.201300007
29- Tsuda A, Konduru NV. The role of natural processes and surface energy of inhaled engineered nanoparticles on aggregation and corona formation. NanoImpact. 2016; 2: 38-44. DOI: 10.1016/j.impact.2016.06.002
30- Keighron JD, Keating CD. Enzyme: nanoparticle bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles. Langmuir. 2010; 26(24): 18992-9000. DOI: 10.1021/la1040882
31- Ganji N, Bothun GD. Albumin protein coronas render nanoparticles surface active: consonant interactions at air–water and at lipid monolayer interfaces. Environ Sci: Nano. 2021; 8(1): 160-73. DOI: 10.1039/D0EN00934B
32- Lu X, Xu P, Ding H-M, Yu Y-S, Huo D, Ma Y-Q. Tailoring the component of protein corona via simple chemistry.Nat Commun. 2019; 10(1): 1-14. DOI: 10.1038/s41467-019-12470-5
33- Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010; 4(7): 3623-32. DOI: 10.1021/nn901372t
34- Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, et al. Physical− chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011; 133(8): 2525-34. DOI: 10.1021/ja107583h
35- Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009; 20(45): 455101. DOI: 10.1088/0957-4484/20/45/455101
36- Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008; 105(38): 14265-70. DOI: 10.1073/pnas.0805135105
37- Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Radler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 2012; 6(3): 2532-41. DOI: 10.1021/nn204951s
38- Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A. 2011; 108(41):16968-73. DOI: 10.1073/pnas.1105270108
39- Dufort S, Sancey L, Coll J-L. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev. 2012; 64(2): 179-89. DOI: 10.1016/j.addr.2011.09.009
40- Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein− nanoparticle interactions: opportunities and challenges. Chem Rev. 2011; 111(9): 5610-37. DOI: 10.1021/cr100440g
41- Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, et al. Effects of cell culture media on the dynamic formation of protein− nanoparticle complexes and influence on the cellular response. ACS Nano. 2010; 4(12): 7481-91. DOI: 10.1021/nn101557e
42- Martel J, Young D, Young A, Wu C-Y, Chen C-D, Yu J-S, et al. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography–tandem mass spectrometry. Anal Biochem. 2011; 418(1): 111-25. DOI: 10.1016/j.ab.2011.06.018
43- Gasser M, Rothen-Rutishauser B, Krug HF, Gehr P, Nelle M, Yan B, et al. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J Nanobiotechnology. 2010; 8(31): 1-9. DOI: 10.1186/1477-3155-8-31
44- Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 2011; 5(9): 7503-9. DOI: 10.1021/nn202458g
45- Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012; 6(1): 36-46. DOI: 10.3109/17435390.2011.552811
46- Podila R, Chen R, Ke PC, Brown J, Rao A. Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett. 2012; 101(26): 263701. DOI: 10.1063/1.4772509
47- Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012; 161(2): 164-74. DOI: 10.1016/j.jconrel.2012.04.009
48- Shahbazi M-A, Sedighi M, Bauleth-Ramos Ts, Kant K, Correia A, Poursina N, et al. Targeted reinforcement of macrophage reprogramming toward M2 polarization by IL-4-loaded hyaluronic acid particles. ACS Omega. 2018; 3(12): 18444-55. DOI: 10.1021/acsomega.8b03182
49- Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004; 4(5): 484-8. DOI: 10.1166/jnn.2003.077
50- Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002; 10(4): 317-25. DOI: 10.1080/10611860290031877
51- Ogawara K-i, Furumoto K, Nagayama S, Minato K, Higaki K, Kai T, et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J Control Release. 2004; 100(3): 451-5. DOI: 10.1016/j.jconrel.2004.07.028
52- Ishida T, Harashima H, Kiwada H. Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab. 2001; 2(4): 397-409. DOI: 10.2174/1389200013338306
53- Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials. 2010; 31(36): 9511-8. DOI: 10.1016/j.biomaterials.2010.09.049
54- Camner P, Lundborg M, Låstbom L, Gerde P, Gross N, Jarstrand C. Experimental and calculated parameters on particle phagocytosis by alveolar macrophages. J Appl Physiol (1985). 2002; 92(6): 2608-16. DOI: 10.1152/japplphysiol.01067.2001
55- Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials. 2009; 30(4): 603-10. DOI: 10.1016/j.biomaterials.2008.09.050
56- Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond). 2016; 11(1): 81-100. DOI: 10.2217/nnm.15.188
57- Capriotti AL, Caracciolo G, Cavaliere C, Colapicchioni V, Piovesana S, Pozzi D, et al. Analytical methods for characterizing the nanoparticle–protein corona. Chromatographia. 2014; 77(11-12): 755-69. DOI: 10.1007/s10337-014-2677-x
58- Li L, Mu Q, Zhang B, Yan B. Analytical strategies for detecting nanoparticle–protein interactions. Analyst. 2010; 135(7): 1519-30. DOI: 10.1039/C0AN00075B
59- Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M. Protein-nanoparticle interactions: Springer; 2013. DOI: 10.1007/978-3-642-37555-2
60- Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, et al. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C. 2008; 112(9): 3300-7. DOI: 10.1021/jp710541j
61- Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity.Nano Lett. 2007; 7(4): 914-20. DOI: 10.1021/nl062743+
62- Tessier PM, Jinkoji J, Cheng Y-C, Prentice JL, Lenhoff AM. Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. J Am Chem Soc. 2008; 130(10): 3106-12. DOI: 10.1021/ja077624q
63- Simberg D, Park J-H, Karmali PP, Zhang W-M, Merkulov S, McCrae K, et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials. 2009; 30(23-24): 3926-33. DOI: 10.1016/j.biomaterials.2009.03.056
64- Xiao Q, Huang S, Qi Z-D, Zhou B, He Z-K, Liu Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta. 2008; 1784 (7-8) 1020-7. DOI: 10.1016/j.bbapap.2008.03.018
65- Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, et al. Complete high‐density lipoproteins in nanoparticle corona. FEBS J.. 2009; 276(12): 3372-81. DOI: 10.1111/j.1742-4658.2009.07062.x
66- Prakasham RS, Devi GS, Rao CS, Sivakumar V, Sathish T, Sarma P. Nickel-impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Appl Biochem Biotechnol. 2010; 160(7): 1888-95. DOI: 10.1007/s12010-009-8726-5
67- Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K. Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res. 2010; 12(1): 47-53. DOI: 10.1007/s11051-009-9774-z
 
Type of Study: Review | Subject: Nanotechnology
Received: 2021/08/10 | Accepted: 2021/12/8 | ePublished ahead of print: 2021/12/19 | ePublished: 2021/12/22

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb