1. Chen S, Lu D, Wang W, Chen W, Zhang S, Wei S. Plasma metabolomic profiling of repeated restraint stress in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2020; 1160: 122294. DOI: 10.1016/j.jchromb.2020.122294 [
DOI:10.1016/j.jchromb.2020.122294] [
PMID]
2. Meyer AE, Curry JF. Pathways from anxiety to stressful events: An expansion of the stress generation hypothesis. Clin Psychol Rev. 2017; 57: 93-116. DOI: 10.1016/j.cpr.2017.08.003 [
DOI:10.1016/j.cpr.2017.08.003] [
PMID]
3. Goodwin JE, Geller DS. Glucocorticoid-induced hypertension. Pediatr Nephrol. 2012; 27(7): 1059-66. DOI: 10.1007/s00467-011-1928-4 [
DOI:10.1007/s00467-011-1928-4] [
PMID]
4. Olubodun-Obadun TG, Ishola IO, Adesokan TP, Anih BO, Adeyemi OO. Antidepressant-and anxiolytic-like actions of Cajanus cajan seed extract mediated through monoaminergic, nitric oxide-cyclic GMP and GABAergic pathways. J Ethnopharmacol. 2023; 306: 116142. DOI: 10.1016/j.jep.2023.116142 [
DOI:10.1016/j.jep.2023.116142] [
PMID]
5. Dutra JM, Espitia PJ, Batista RA. Formononetin: Biological effects and uses-A review. Food chem. 2021; 359: 129975. DOI: 10.1016/j.foodchem.2021.129975 [
DOI:10.1016/j.foodchem.2021.129975] [
PMID]
6. Tian Z, Liu Sb, Wang Yc, Li Xq, Zheng Lh, Zhao Mg. Neuroprotective effects of formononetin against NMDA‐induced apoptosis in cortical neurons. Phytother Res. 2013; 27(12): 1770-5. DOI:10.1002/ptr.4928 [
DOI:10.1002/ptr.4928] [
PMID]
7. Aly SH, Elissawy AM, Fayez AM, Eldahshan OA, Elshanawany MA, Singab ANB. Neuroprotective effects of Sophora secundiflora, Sophora tomentosa leaves and formononetin on scopolamine-induced dementia. Nat. Prod. Res. 2021; 35(24): 5848-52. DOI: 10.1080/14786419.2020.1795853 [
DOI:10.1080/14786419.2020.1795853] [
PMID]
8. Wang X-s, Guan S-y, Liu A, Yue J, Hu L-n, Zhang K, et al. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol Brain. 2019; 12: 1-12. DOI: 10.1186/s13041-019-0453-4 [
DOI:10.1186/s13041-019-0453-4] [
PMID] [
]
9. Chieffi S, Carotenuto M, Monda V, Valenzano A, Villano I, Precenzano F, et al. Orexin system: the key for a healthy life. Front Physiol. 2017; 8: 357. DOI: 10.3389/fphys.2017.00357 [
DOI:10.3389/fphys.2017.00357] [
PMID] [
]
10. Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology. 2020; 167: 107993. DOI: 10.1016/j.neuropharm.2020.107993 [
DOI:10.1016/j.neuropharm.2020.107993] [
PMID]
11. Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, et al. Research progress in calcitonin gene-related peptide and bone repair. Biomolecules. 2023; 13(5): 838. DOI: 10.3390/biom13050838 [
DOI:10.3390/biom13050838] [
PMID] [
]
12. Hashikawa-Hobara N, Ogawa T, Sakamoto Y, Matsuo Y, Ogawa M, Zamami Y, Hashikawa N. Calcitonin gene-related peptide pre-administration acts as a novel antidepressant in stressed mice. Sci Rep. 2015; 5(1): 12559. DOI: 10.1038./srep12559 [
DOI:10.1038/srep12559] [
PMID] [
]
13. Haghighat K, Mahmoudi F, Khazali H. Study of the central Injection effects of chrysin on behavioral and intra hypothalamic gene expression levels of CRH and CGRP in male rats. Gene, Cell Tissue. 2024; 11(2): e147106. DOI: 10.5812/gct-147106 [
DOI:10.5812/gct-147106]
14. Neghaddadgar L, Mahmoudi F, Khazali H. Effects of dopamine and L-dopa on ghrelin gene expresion in the hypothalamus and ovary in a polycystic ovarian syndrome rat model. Sci. J. Kurdistan Univ. Med. Sci. 2024; 28(6): 1-11. DOI: 10.61186/SJKU.28.6.1 [
DOI:10.61186/sjku.28.6.1]
15. Bahari N, Mahmoudi F, Haghighat K, Khazali H. The Effects of Trans-anethole on the Hypothalamic CGRP and CRH Gene Expression in Rat Model of Stress. Arch Biochem Biophys. 2023; 14(1): 1-7. DOI: 10.22037/aab.v14i1.41158
16. Mohammadpour MJ, Nourizadeh E, Mahmoudi F. Analgesic effect of trans-anethole. Journal of Basic and Clinical Pathophysiology. 2023; 11(1): 44-50. DOI: 10.22070/jbcp.2023.17492.1168
17. Sargin D. The role of the orexin system in stress response. Neuropharmacology. 2019; 154: 68-78. DOI: 10.1016/j.neuropharm.2018.09.034 [
DOI:10.1016/j.neuropharm.2018.09.034] [
PMID]
18. Hwang BH, Katner J, Iyengar S. Corticotropin-releasing factor mRNA and substance P receptor binding in the paraventricular hypothalamic nucleus, central nucleus of the amygdala, and locus coeruleus of Sprague-Dawley rats following restraint-induced stress. J Mol Neurosci. 2005; 25(3): 239-50. DOI: 10.1385/JMN:25:3:239 [
DOI:10.1385/JMN:25:3:239] [
PMID]
19. Iftikhar K, Siddiq A, Baig SG, Zehra S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides. 2020;79: 101993. DOI: 10.1016/j.npep.2019.101993 [
DOI:10.1016/j.npep.2019.101993] [
PMID]
20. Wen XD, Qi LW, Li B, Li P, Yi L, Wang YQ, et al. Microsomal metabolism of calycosin, formononetin and drug-drug interactions by dynamic microdialysis sampling and HPLC-DAD-MS analysis. J Pharm Biomed Anal. 2009; 50(1), 100-05. DOI: 10.1016/j.jpba.2009.03.038 [
DOI:10.1016/j.jpba.2009.03.038] [
PMID]
21. Blake C, Fabick KM, Setchell KD, Lund TD, Lephart ED. Neuromodulation by soy diets or equol: anti-depressive & anti-obesity-like influences, age-& hormone-dependent effects. BMC Neurosci. 2011; 12(1), 1-13. DOI: 10.1186/1471-2202-12-28 [
DOI:10.1186/1471-2202-12-28] [
PMID] [
]
22. Wang XS, Guan SY, Liu A, Yue J, Hu LN, Zhang K, et al. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol Brain. 2019; 12: 1-2. DOI: 10.1186/s13041-019-0453-4 [
DOI:10.1186/s13041-019-0453-4] [
PMID] [
]
23. Shainidze KZ, Perekrest SV, Novikova NS, Kazakova TB, Korneva EA. Stimulation of orexinergic system in the CNS and in immune organs by various forms of stress. Adv Neuroimmune Biol. 2012; 3(3-4): 255-64. DOI: 10.3233/NIB-012915 [
DOI:10.3233/NIB-012915]
24. Lungwitz EA, Molosh A, Johnson PL, Harvey BP, Dirks RC, Dietrich A, et al. Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol Behav. 2012; 107(5): 726-32. DOI: 10.1016/j.physbeh.2012.05.019 [
DOI:10.1016/j.physbeh.2012.05.019] [
PMID] [
]
25. Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, et al. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits. 2013; 7: 192. DOI: 10.3389/fncir.2013.00192 [
DOI:10.3389/fncir.2013.00192] [
PMID] [
]
26. Zhang C, Zhu L, Lu S, Li M, Bai M, Li Y, Xu E. The antidepressant-like effect of formononetin on chronic corticosterone-treated mice. Brain Res. 2022; 1783: 147844. DOI: 10.1016/j.brainres.2022.147844 [
DOI:10.1016/j.brainres.2022.147844] [
PMID]
27. Sink KS, Walker DL, Yang Y, Davis M. Calcitonin gene-related peptide in the bed nucleus of the stria terminalis produces an anxiety-like pattern of behavior and increases neural activation in anxiety-related structures. J Neurosci. 2011; 31(5): 1802-10. DOI: 10.1523/JNEUROSCI.5274-10.2011 [
DOI:10.1523/JNEUROSCI.5274-10.2011] [
PMID] [
]
28. Dhillo WS, Small CJ, Jethwa PH, Russell SH, Gardiner JV, Bewick GA, et al. Paraventricular nucleus administration of calcitonin gene-related peptide inhibits food intake and stimulates the hypothalamo-pituitary-adrenal axis. Endocrinology. 2003;144(4):1420-5. DOI: 10.1210/en.2002-220902 [
DOI:10.1210/en.2002-220902] [
PMID]
29. Tian J, Wang X-Q, Tian Z. Focusing on formononetin: recent perspectives for its neuroprotective potentials. Front Pharmacol. 2022; 13: 905898. DOI: 10.3389/fphar.2022.905898 [
DOI:10.3389/fphar.2022.905898] [
PMID] [
]
30. Wang M, Gu Y, Meng S, Kang L, Yang J, Sun D, et al. Association between TRP channels and glutamatergic synapse gene polymorphisms and migraine and the comorbidities anxiety and depression in a Chinese population. Front Genet. 2023; 14: 1158028. DOI: 10.3389/fgene.2023.1158028 [
DOI:10.3389/fgene.2023.1158028] [
PMID] [
]