Volume 32, Issue 3 (Autumn 2025)                   Journal of Translational Medical Research. 2025, 32(3): 223-236 | Back to browse issues page

Research code: ۱۶۲۸۶۸۶۴۸
Ethics code: IR.IAU.URIMA.REC.1403.079


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadbeygi H, Hosseinchi M. Study of the protective effects of hydroalcoholic extract of Nigella sativa on fertility parameters in type 1 diabetic syrian mice. Journal of Translational Medical Research. 2025; 32 (3) :223-236
URL: http://journal.bums.ac.ir/article-1-3540-en.html
1- Graduate of Doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Ur.C., Islamic Azad University, Urmia, Iran
2- Department of Basic Science, Faculty of Veterinary Medicine, Ur.C., Islamic Azad University, Urmia, Iran , hosseinchi.m@iau.ac.ir
Full-Text [PDF 731 kb]   (128 Downloads)     |   Abstract (HTML)  (388 Views)
Full-Text:   (50 Views)
Background and Objective: Type 1 diabetes negatively affects the reproductive system by inducing metabolic disturbances and increasing oxidative stress, which reduces the success of assisted reproductive techniques, such as in vitro fertilization (IVF). Nigella sativa, due to its bioactive compounds, such as thymoquinone and its antioxidant and anti-inflammatory properties, may be effective in reducing these disorders. This study was designed to investigate the effects of the hydroalcoholic extract of Nigella sativa on IVF-related fertility parameters in male diabetic mice.
Materials and Methods: Diabetes was induced in male mice by streptozotocin injection, and the animals were divided into five groups: healthy control, diabetic control, and three diabetic groups receiving Nigella sativa extract at doses of 50, 100, and 200 mg/kg for 30 days. Subsequently, oocytes from healthy female mice were fertilized in vitro with epididymal sperm from the male mice, and the fertilization rate, two-cell and four-cell embryo development, total antioxidant capacity, serum testosterone levels, and percentages of immature and abnormal sperm were evaluated.
Results:  Diabetes significantly reduced the fertilization rate, two-cell and four-cell embryo development, total antioxidant capacity, and testosterone levels. In contrast, the percentages of immature and abnormal sperm were significantly higher. Administration of Nigella sativa to diabetic male mice improved their fertility parameters. In diabetic control mice, treatment with Nigella sativa at doses of 50 and 100 mg/kg resulted in moderate improvements in fertilized oocytes and two-cell and four-cell embryos (P<0.05). In contrast, the 200 mg/kg dose nearly restored these parameters to the levels observed in healthy controls (P<0.01). Total antioxidant capacity and serum testosterone levels increased in a dose-dependent manner (P<0.01). Additionally, the percentages of immature and abnormal sperm gradually decreased with higher doses (P<0.01).
Conclusion: Hydroalcoholic extract of Nigella sativa significantly reduces the adverse effects of diabetes on fertility and early embryonic development, probably because of its antioxidant and anti-inflammatory properties. 
Keywords: Diabetes, Fertility, In vitro Fertilization, Nigella Sativa, Oxidative Stress
Type of Study: Original Article | Subject: Reproductive Biology
Received: 2025/07/22 | Accepted: 2025/11/10 | ePublished ahead of print: 2025/12/17 | ePublished: 2025/11/11

References
1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2020;43(Suppl 1): S14-S31. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC2797383/
2. Hasan MM, Al-Kuraish S. The protective properties of hydro-alcoholic extract of Nigella sativa on male reproductive system in type 2 diabetes rat. Health Biotechnol Biopharma (HBB). 2019؛3(1):45-56. https://www.healthbiotechpharm.org/article_133331.html
3. Graziani A, Scafa R, Grande G, Ferlin A. Diabetes and male fertility disorders. Mol Aspects Med. 2024;99:101303. https://doi.org/10.1016/j.mam.2024.101303 [DOI:10.1016/j.mam.2024.101303.] [PMID]
4. Dena SM, Adeleye AO, Mohlala K, Langa BC, Opuwari CS. The Impact of Diabetes Mellitus-Related Oxidative Stress on Male Fertility: A Review. J Diabetes. 2025 Oct;17(10):e70157. https://pubmed.ncbi.nlm.nih.gov/41123473/ [DOI:10.1111/1753-0407.70157] [PMID] []
5. Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review of clinical trials on black seed (Nigella sativa) and its active compound, thymoquinone. J Pharmacopuncture. 2017 Sep;20(3):179-93. DOI: 10.3831/KPI.2017.20.021. https://pubmed.ncbi.nlm.nih.gov/30087794/ [DOI:10.3831/KPI.2017.20.021] [PMID] []
6. Amin B, Hosseinzadeh H. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti inflammatory Effects. Planta Med. 2015;82(1 02):17-27. DOI:10.1055/s-0035-1557838. https://www.researchgate.net/publication/281779592_Black_Cumin_Nigella_sativa_and_Its_Active_Constituent_Thymoquinone_An_Overview_on_the_Analgesic_and_Anti-inflammatory_Effects [DOI:10.1055/s-0035-1557838] [PMID]
7. Alberts A, Moldoveanu E-T, Niculescu A-G, Grumezescu AM. Nigella sativa: A Comprehensive Review of Its Therapeutic Potential, Pharmacological Properties, and Clinical Applications. Int J Mol Sci. 2024;25(24):13410. doi:10.3390/ijms252413410. https://pubmed.ncbi.nlm.nih.gov/39769174/ [DOI:10.3390/ijms252413410] [PMID] []
8. Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr. 2023;10:1126272. doi:10.3389/fnut.2023.1126272. https://pubmed.ncbi.nlm.nih.gov/37818339/ [DOI:10.3389/fnut.2023.1126272] [PMID] []
9. Parandin R, Yousofvand N, Ghorbani R. The enhancing effects of alcoholic extract of Nigella sativa seed on fertility potential, plasma gonadotropins and testosterone in male rats. Iran J Reprod Med. 2012;10(4):355-362. https://pubmed.ncbi.nlm.nih.gov/25246898/
10. Modarresi M. Comparative study of the effects of garlic, black elderberry, and Nigella sativa extracts on white blood cell counts and blood protein components in laboratory mice. Zist Shenasi Janvari (Animal Biology). 2011;3(3). https://journals.iau.ir/article_530519.html
11. Keramati R, Najafi G, Seyrafi R, Shalizar‑Jalali A. The protective effect of catechin on fertility in streptozotocin‑induced diabetic male mice. J Babol Univ Med Sci. 2023 Mar 10;25(1):221‑32. DOI: 10.22088/jbums.25.1.221. URL: http://jbums.org/article-1-10640-en.html
12. Heydari T, Shalizar‑Jalali A, Esmaeilnejad B, Najafi G, Rostami H. Babesiosis causes reproductive dysfunction in splenectomized mice: a proof of concept in vitro study. Iranian Journal of Veterinary Surgery. 2022 Apr 1;17(1):50‑54. DOI:10.30500/IVSA.2022.314467.1285
13. https://www.researchgate.net/publication/359187703_Babesiosis_Causes_Reproductive_Dysfunction_in_Splenectomized_Mice_A_Proof_of_Concept_in_Vitro_Study
14. Seed J, Chapin RE, Clegg ED, Dostal LA, Foote RH, Hurtt ME, et al. Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: a consensus report. Reprod Toxicol. 1996 May Jun;10(3):237 44. DOI:10.1016/0890-6238(96)00028 7. https://pubmed.ncbi.nlm.nih.gov/8738562/ [DOI:10.1016/0890-6238(96)00028-7] [PMID]
15. Suckow MA, Weisbroth SH, Franklin CL. The Laboratory Rat. 2nd ed. Amsterdam: Elsevier; 2006. p. 165-173. https://books.google.com/books/about/The_Laboratory_Rat.html?id=zJWgc-QBIUYC
16. Takeo T, Nakagata N. In vitro fertilization in mice. Cold Spring Harb Protoc. 2018 Jun 1;2018(6). DOI:10.1101/pdb.prot094524. https://pubmed.ncbi.nlm.nih.gov/29669849/ [DOI:10.1101/pdb.prot094524] [PMID]
17. Golkar-Narenji A, Gourabi H, Eimani H, Barekati Z, Akhlaghi A. Superovulation, in vitro fertilization (IVF) and in vitro development (IVD) protocols for inbred BALB/cJ mice in comparison with outbred NMRI mice. Reprod Med Biol. 2012 Apr 7;11(4):185-192. DOI: 10.1007/s12522-012-0127-8. https://pubmed.ncbi.nlm.nih.gov/29699122/ [DOI:10.1007/s12522-012-0127-8] [PMID] []
18. Alyürük B, Yazir Y, Korun ZU, Budak Ö, Kalyan EY, Kılıç KC. Impacts of type 1 diabetes on male fertility and embryo quality in mice. Tissue Cell. 2025;95:102941. DOI:10.1016/j.tice.2025.102941. https://pubmed.ncbi.nlm.nih.gov/40315694/ [DOI:10.1016/j.tice.2025.102941] [PMID]
19. Alyürük B, Yazir Y, Korun ZU, Budak Ö, Kalyan EY, Kılıç KC. Impacts of type 1 diabetes on male fertility and embryo quality in mice. Tissue Cell. 2025;95:102941. doi:10.1016/j.tice.2025.102941. https://pubmed.ncbi.nlm.nih.gov/40315694/ [DOI:10.1016/j.tice.2025.102941] [PMID]
20. Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients. 2021;13(6):1784. DOI: 10.3390/nu13061784. https://www.mdpi.com/2072-6643/13/6/1784 [DOI:10.3390/nu13061784] [PMID] []
21. Abd Elkareem M, Abd El Rahman MAM, Abou Khalil NS, Amer AS, et al. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Sci Rep. 2021;11:13519. DOI:10.1038/s41598 021 92977 4. [DOI:10.1038/s41598-021-92977-4] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Translational Medical Research

Designed & Developed by : Yektaweb