Volume 29, Issue 2 (Aug 2022)                   J Birjand Univ Med Sci. 2022, 29(2): 97-106 | Back to browse issues page

Research code: IR.IAU.KAU.REC.1396.128
Ethics code: IR.IAU.KAU.REC.1396.128


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghavami M, Shariati M, Moghadamnia D. Protective effect of hydroalcoholic extract of Passiflora caerulea aerial parts on cadmium chloride-induced renal dysfunction in male rats. J Birjand Univ Med Sci. 2022; 29 (2) :97-106
URL: http://journal.bums.ac.ir/article-1-3175-en.html
1- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
2- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran , davood.moghadamnia@gmail.com
Full-Text [PDF 1212 kb]   (256 Downloads)     |   Abstract (HTML)  (786 Views)
Full-Text:   (169 Views)
ABSTRACT
Background and Aims: Passiflora caerulea has antioxidant properties. The present study aimed to assess the effects of hydroalcoholic extract of Passiflora caerulea aerial parts on cadmium chloride-induced renal dysfunction in male rats.
Materials and Methods: In this experimental study, 54 adults male Wistar rats 200±10 gr were divided into 6 groups (N=9). Control group, the sham group that received 0.2 ml/kg of distilled water as solvent. Renal Injury induction group: received 2 mg/kg cadmium chloride intraperitoneally (IP) for 21 days. Treatment groups 1, 2, and 3, respectively, received 2 mg/kg cadmium chloride IP for 21 days, followed by 150, 300, and 450 mg/kg hydroalcoholic extracts of aerial parts of Passiflora caerulea intraperitoneally for 30 days. At the end, blood samples were taken from all animals. Serum levels of sodium, potassium, Blood Urea Nitrogen (BUN), creatinine and uric acid were measured. Data were analyzed using SPSS 18, ANOVA and Tukey test.
Results: Cadmium chloride caused a significant increase in serum concentrations of creatinine (P<0.001), BUN (P<0.001), sodium (P<0.001), potassium (P=0.04) and uric acid (P<0.001) compared to the control group. Different amounts of hydroalcoholic extract of aerial parts of Passiflora caerulea could significantly reduce serum concentrations of creatinine (P<0.001), BUN (P<0.001), sodium (P<0.001), potassium (P<0.001) and uric acid (P<0.001) in all treatment groups compared to cadmium chloride.
Conclusion: As evidenced by the obtained results, the hydroalcoholic extract of aerial parts of the Passiflora caerulea plant has a protective effect on cadmium chloride-induced renal dysfunction in male rats.


1- Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, et al. The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol. 2006; 1(22): 1-6. DOI: 10.1186/1745-6673-1-22.
2- Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian J Intern Med. 2017; 8(3): 135-45. DOI: 10.22088/cjim.8.3.135
3- Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules. 2021; 11(11): 1575. DOI: 10.3390/biom11111575
4- Abdelaziz I, Elhabiby MI, Ashour AA. Toxicity of cadmium and protective effect of bee honey, vitamins C and B complex. Hum Exp Toxicol. 2013; 32(4): 362-70. DOI: 10.1177/0960327111429136.
5- Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5): 210-29. DOI: 10.4314/ajtcam.v10i5.2
6- Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int J Mol Sci. 2022; 23(2): 585. DOI: 10.3390/ijms23020585.
7- Ingale AG, Hivrale AU. Pharmacological studies of Passiflora sp. and their bioactive compounds. African Journal of Plant Science. 2010; 4(10): 417-26. DOI: 10.5897/AJPS.9000185
8- Tiwari S, Singh S, Tripathi S, Kumar S. A pharmacological review: Passiflora species. Asian Journal of Pharmaceutical Research. 2015; 5(4): 195-202. DOI: 10.5958/2231–5691. 
9- da Silva JK, Cazarin CB, Batista ÂG, Maróstica Jr M. Effects of passion fruit (Passiflora edulis) byproduct intake in antioxidant status of Wistar rats tissues. LWT-Food Sci Technol. 2014; 59(2): 1213-9. DOI: 10.1016/j.lwt.2014.06.060.
10- Devaki K, Beulah U, Akila G, Gopalakrishnan VK. Effect of aqueous extract of Passiflora edulis on biochemical and hematological parameters of Wistar albino rats.Toxicol Int. 2012; 19(1): 63-7. DOI: 10.4103/0971-6580.94508
11- Motaghinejad M, Motevalian M, Motaghinejad O. Preventive effects of hydroalcoholic extract of Passiflora incarnata on morphine withdrawal syndrome and its comparison with clonidine in mice. Iran J Pharmacol Ther. 2017; 15(1): 1-4. URL: http://ijpt.iums.ac.ir/article-1-347-en.html.
12- Ashour TH. Preventative effects of caffeic Acid phenyl ester on cadmium intoxication induced hematological and blood coagulation disturbances and hepatorenal damage in rats. ISRN Hematol. 2014; 2014: 764754. DOI: 10.1155/2014/764754.
13- Braga A, Stein AC, Dischkaln Stolz E, Dallegrave E, Buffon A, do Rego JC, et al. Repeated administration of an aqueous spray-dried extract of the leaves of Passiflora alata Curtis (Passifloraceae) inhibits body weight gain without altering mice behavior. J Ethnopharmacol. 2013; 145(1): 59-66. DOI: 10.1016/j.jep.2012.10.034.
14- Sanni S, Yemoa A, Bigot C, Kpossou P, Joachim LF, Bigot A. Assessment of the analytical quality of the electrolyte analyzer iSmart 30 PRO for the measurement of serum electrolytes. Int Res J Biochem Bioinform. 2018; 8(2): 9-14. DOI: 10.14303/irjbb.2018.003.
15- Andjelkovic M, Buha Djordjevic A, Antonijevic E, Antonijevic B, Stanic M, Kotur-Stevuljevic J, et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 2019; 16(2): 274. DOI: 10.3390/ijerph16020274.
16- Branca JJ, Fiorillo C, Carrino D, Paternostro F, Taddei N, Gulisano M, et al. Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants (Basel). 2020; 9(6): 492. DOI: 10.3390/antiox9060492.
17- Viera W, Shinohara T, Samaniego I, Sanada A, Terada N, Ron L,. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants (Basel). 2022; 11(3): 328. DOI: 10.3390/plants11030328.
18- Park JW, Kwon OK, Ryu HW, Paik JH, Paryanto I, Yuniato P, et al. Anti-inflammatory effects of Passiflora foetida L. in LPS-stimulated RAW264. 7 macrophages. Int J Mol Med. 2018; 41(6): 3709-16. DOI: 10.3892/ijmm.2018.3559.
19- Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med (Berl). 2015; 93(7): 759-72. DOI: 10.1007/s00109-015-1301-3.
20- Sadeghi T, Shariati M, Mokhtari M. The Effects of Hydroalcoholic Leaf Extract of Passiflora Caerulea on Activity of Liver Enzymes in Male Rats. Journal of Animal Biology. 2016; 8(4): 71-8. [Persian] http://ascij.damghaniau.ac.ir/article_530703.html?lang=en
21- Salles BC, Leme KC, da Silva MA, da Rocha CQ, Tangerina MM, Vilegas W, et al. Protective effect of flavonoids from Passiflora edulis Sims on diabetic complications in rats. J Pharm Pharmacol. 2021; 73(10):1361–8. DOI: 10.1093/jpp/rgab046.
22- Colomeu TC, Figueiredo D, Cazarin CB, Schumacher NS, Maróstica Jr MR, Meletti LM, et al. Antioxidant and anti-diabetic potential of Passiflora alata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice). Int Immunopharmacol. 2014; 18(1): 106-15. DOI: 10.1016/j.intimp.2013.11.005.
23- Rudnicki M, Silveira MM, Pereira TV, Oliveira MR, Reginatto FH, Dal-Pizzol F, et al. Protective effects of Passiflora alata extract pretreatment on carbon tetrachloride induced oxidative damage in rats. Food Chem Toxicol. 2007; 45(4): 656-61. DOI: 10.1016/j.fct.2006.10.022.
24- da Silva JK, Cazarin CB, Colomeu TC, Batista ÂG, Meletti LM, Paschoal JA, et al.  Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: in vitro and in vivo study. Food Res Int. 2013; 53(2): 882-90. DOI: 10.1016/j.foodres.2012.12.043.
25- Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gülçin İ. Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A Multi-Biomarker Approach. Sci Pharm. 2017; 85(1): 4. DOI:10.3390/scipharm85010004.
26- Rashid S, Ali N, Nafees S, Ahmad ST, Arjumand W, Hasan SK, et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods. 2013; 23(5): 337-45. DOI:10.3109/15376516.2012.759306.
27- He X, Li C, Wei Z, Wang J, Kou J, Liu W, et al.  Protective role of apigenin in cisplatin-induced renal injury. Eur J Pharmacol. 2016; 789: 215-221. DOI: 10.1016/j.ejphar.2016.07.003.
28- Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, et al. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol. 2017; 313(2): F414-F422. DOI: 10.1152/ajprenal.00393.2016.
29- Xin SB, Yan H, Ma J, Sun Q, Shen L. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice. Med Sci Monit. 2016; 22: 5173-5180. DOI: 10.12659/msm.898177.
30- Liu Y, Shi B, Li Y, Zhang H. Protective Effect of Luteolin Against Renal Ischemia/Reperfusion Injury via Modulation of Pro-Inflammatory Cytokines, Oxidative Stress and Apoptosis for Possible Benefit in Kidney Transplant. Med Sci Monit. 2017; 23: 5720-5727. DOI: 10.12659/MSM.903253
Type of Study: Original Article | Subject: Physiology
Received: 2022/06/14 | Accepted: 2022/07/13 | ePublished ahead of print: 2022/07/27 | ePublished: 2022/09/3

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Birjand University of Medical Sciences

Designed & Developed by : Yektaweb