Antibiotic resistance pattern and biofilm production in Staphylococcus aureus isolates and Staphylococcus epidermidis isolated from hospital infections Tehran in 2016

Sina Mashaieki1, Kumarss Amini2

Background and Aim: Staphylococci are common pathogens of humans and livestock that able to produce a wide range of diseases. Staphylococcus epidermidis and Staphylococcus aureus are the important factors for biofilm production in patients. This study was designed to determine the ability of biofilm production and the resistance pattern of Staphylococcus epidermidis and Staphylococcus aureus strains that isolated from hospital and food infectious.

Materials and Methods: This descriptive cross-sectional study was performed on 117 hospital samples. First, biochemical tests were used in order to isolate and confirm Staphylococcus epidermidis and aureus strains. To determine biofilm production, the Microtiter plate method was applied and the presence of icaA and icaD genes are were identified using PCR. Antibiotic resistance pattern of strains was evaluated by Disk diffusion method related to 7 antibiotics.

Results: 12 strains of Staphylococcus epidermidis and 20 strains of Staphylococcus aureus were isolated from 117 hospital samples by biochemical tests, of these, 6 strains of the Staphylococcus epidermidis and 16 strains of the Staphylococcus aureus were the producers of biofilm. PCR results shown that icaA and icaD genes were present in 15 strains of Staphylococcus aureus and 6 strains of the Staphylococcus epidermidis. The highest antibiotic resistance in the antibiotic resistance test was related to penicillin, gentamicin, and amikacin respectively.

Conclusion: Extending clinical samples of biofilm producers with multiple antibiotic resistance can be considered as a serious risk for patients and lead to increase mortality rate in hospitals.

Key Words: Staphylococcus epidermidis, Staphylococcus aureus, Biofilm, Antibiotic Resistance

Received: June 24, 2017 Accepted: June 11, 2018

1 Department of Microbiology, Sirjan Branch Islamic Azad University, Sirjan, Iran.
2 Corresponding Author; Department of Microbiology, Facult of basic science, Saveh Branch, Islamic Azad University, Saveh, Iran. Tel: 09125454074 Fax: 021-44850954 Email: dr_kumarss_amin@yahoo.com
مقاله کوتاه

بررسی الگوی مقاومت آنتی بیوتیکی و تولید بیوفیلم در ایزوله‌های استافیلوکوکوس/اورئوس و استافیلوکوکوس/ایپیدرمیس جداسازه‌های عفونته‌های بیمارستانی شهر تهران، در سال 1395

سینا مشایخی، کیمیوت امینی

چکیده

زمینه و هدف: استافیلوکوکوس‌ها، پاتوژن مشترکی بین انسان و گونه‌های مختلف دامی است که قابلیت ایجاد طیف وسیعی از بیماری‌های را دارد. استافیلوکوکوس/ایپیدرمیس و استافیلوکوکوس/اورئوس، عوامل مهمی در ایجاد بیوفیلم در بیماران هستند. این مطالعه با هدف تجویز آزمایش تولید بیوفیلم و الگو مقاومتی سوبه‌های استافیلوکوکوس/ایپیدرمیس و استافیلوکوکوس/اورئوس جداسازه‌های آزمایشگاهی، استفاده کرده است.

روش تحقیق: این مطالعه توصیفی-مقطعی بر روی 117 نمونه بیمارستانی انجام شد. ابتدا آزمایش‌های بیوشیمیایی بر روی نمونه‌ها به‌منظور جداسازی و تایید جنس استافیلوکوکوس/اورئوس و استافیلوکوکوس/ایپیدرمیس انجام گردید. سپس برای تعیین تولید بیوفیلم، از روش میکروبیولوژی استفاده شد و حضور زنده‌ای icaD و icaA با استفاده از PCR مشخص گردید. الگو مقاومت PCR این بیوپتیک به‌طور میانگین به پی سبلین جنتامیسین و آمیکاسین بود.

نتیجه‌گیری: گسترش نمونه‌های بازیل بیوفیلم با مقاومت‌های آنتی بیوتیکی متفاوت، می‌تواند معنی‌دار خطر جدی برای بیماران محصور شده و باعث افزایش نرخ مرگ و میر در بیمارستان‌ها گردد.

واژه‌های کلیدی: استافیلوکوکوس/اورئوس، استافیلوکوکوس/ایپیدرمیس، بیوفیلم، مقاومت آنتی بیوتیکی

دریافت: 1397/3/26 - پذیرش: 1397/3/21

1. دانش‌آموخته کارشناسی ارشد گروه میکروپایوژی دانشگاه آزاد اسلامی، واحد سیکدر، مشهد، ایران
2. نویسنده مسئول گروه میکروپایوژی دانشگاه علوم پزشکی تبریز، واحد دانشگاه آزاد اسلامی، واحد سیکدر، مشهد، ایران
3. ادرس: دانشگاه آزاد اسلامی، واحد سیکدر، دانشکده علوم پزشکی

dr_kumarss_amini@yahoo.com

تلفن: 09125454074 - نمایر: 91235670 - پست الکترونیکی: 161
فصل مقدمه

استافیلوکوکوس‌ها در طیفی انتشار وسیعی داشته و غالباً به عنوان میکروفرور در انسان و حیوانات مطرح هستند. این باکتریها می‌توانند به صورت اجتماع پیوسته در سطوح داخلی و سواده‌ای اداری رشد کنند و مقاومت فوق العاده‌ای نسبت به عوامل ضد میکروبی و خود نشان می‌دهند (1). بیوفیلم، ساختاری مشکی‌خونی از یک جمعیت باکتری‌یا است، که به وسیله‌ی باکتری‌ها ایجاد می‌شود. باکتری‌ها به وسیله‌ی مشخص است. این ویژگی به باکتری‌ها ایجاد اتصال به سطوح مختلف و همچنین افزایش مقاومت داشتی به آنی پروریک در همانهای خانواده استافیلوکوکاسی، استافیلوکوکوس اورئوس و استافیلوکوکوس پیدریزیس بیوپتیس بیوپتیس باکتری‌های پاتوژن‌های مطرح هستند و از عوامل مهم بروز عفونت بیمارستانی محسوب می‌شوند. این باکتری‌ها به وسیله‌ی تشکیل بیوفیلم، اتصال به سطوح مختلف از قبل و ترتیب‌های مکانیکی، کاتر و بافت میزان را دارا هستند (2). از طرف دیگر تشکیل بیوفیلم موجب ایجاد عفونت‌های مقاوم به درمان می‌شود که درتیجه‌ی بسیاری افزایش هزینه‌های ناشی از درمان، شکست درمانی و عفونت‌های مگردند. تخمین زده می‌شود که هرصد از عفونت‌های بیمارستانی در ایالات متحده با تشکیل بیوفیل‌ها در ارتباط بوده و خسارات اقتصادی ناشی از بیوفیلم‌ها سالانه بیش از یک میلیارد دلار هزینه دارد (3).

در این ارگانیسم‌ها، تولید بیوفیلم ناشی از فعالیت اپروپیون icA/BCD تحت عنوان سِب‌پیشک، که مهم‌ترین عامل برای تشکیل اپروپیون به‌روز می‌گردد. از اول نظر می‌شود که این عنوان icA/BCD از نظر سیستم‌های تنظیمی تعددی کنترل می‌شوند. در است. این سیستم‌ها تنظیم شامل و سیگما B عاده به سیستم‌های اپروپیون معادل در icA/BCD سیستم aig نیز در ایجاد بیوفیلم تمایل دارد (4). از میان تنهای لکوس ریاگر HCO

\[\text{icA} \]
دانشگاه علوم پزشکی بیجنز دوره 52، شماره 3، تابستان 1397 مجله علمی دانشگاه علوم پزشکی بیرجند

نمونه باکتریایی با استفاده از دستورالعمل کیت DNA استخراج سیبانز (Cinna Pure DNA KIT-PR881631) بهدست آمد و درجه خلوص محصول استخراج شده در طول موج ۵۰ نانومتر، با استفاده از دستگاه اسکیترومتر تایید شد.

تست برای شناسایی ژن‌های کدکننده بیوفیلم M-PCR با استفاده از توالی‌های الگونوکلوتیدی iCaD و iCaA و iCaA-F: 5'-TCTGGAACCAATCCCAACA-3'

و iCaD-R: 5'-AGATTATGTTTAAAGCA-3' و در دستگاه ترمال سایکلر (آنتنورف، آلمان) در حجم ۲۰ میکرولومتر ذرت و ۵۰ نانومتر DNA ادغام گردید.

در مشتاق دیربی، طبقه ۳+SD، منافع بیوفیلم، رنگ آمیزی با استفاده از کمیتال و بیولا بررسی در طول موج نوری ۵۰۰ نانومتر با استفاده از دستگاه الیزای مولکول.

در حالت حاوی یک مرحله گازوکسیژن، کنترل مورد مطالعه ۲ مرتبه جدید نوره یک از اپی‌کولرها، مورد بررسی قرار گرفت. روش محاصله مقدار تولید بیوفیلم برای هر گروه در جدول یک ارائه شده است.

۱- رطیب‌نده تشکیل بیوفیلم به وسیله روش میکروتروپیلیت

نتایج حاصل از

توصیف تشکیل محاسبه میزان حد نسبی بیوفیلم (OD) نوری

<table>
<thead>
<tr>
<th>میزان حداکثر جذب بیوفیلم</th>
<th>OD</th>
<th>0.332</th>
<th>4.0OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط</td>
<td>0.166</td>
<td>0.332</td>
<td>4.0OD</td>
</tr>
<tr>
<td>شیوع</td>
<td>0.083</td>
<td>0.166</td>
<td>2.0OD</td>
</tr>
<tr>
<td>عدم اتصال</td>
<td>0.083</td>
<td>0.083</td>
<td>2.0OD</td>
</tr>
</tbody>
</table>

یافته‌ها

در این مطالعه تعداد ۱۷۱ نمونه از بالین، از سه بیمارستان آموزشی تهران جمع‌آوری گردید که از این تعداد ۲۰ مورد میکروکسایزی با استفاده از کمیتال و بیولا بررسی در حالت حاوی یک مرحله گازوکسیژن، کنترل مورد مطالعه ۲ مرتبه جدید نوره یک از اپی‌کولرها، مورد بررسی قرار گرفت. روش محاصله مقدار تولید بیوفیلم برای هر گروه در جدول یک ارائه شده است.
استافیلوکوکوس اورنوس، 16% از آنها (80%) مولد بیوفیلم بودند که از این تعداد 12 اینژوله توانایی اتصال قوی، 3 اینژوله توانایی اتصال متوسط و 12 اینژوله توانایی اتصال ضعیف را داشتند. از مجموع 12 اینژوله استافیلوکوکوس/ایپیرمیدیس، 8 (67%) مولد بیوفیلم بودند که از این تعداد 3 اینژوله توانایی اتصال قوی، 2 اینژوله توانایی اتصال متوسط و 12 اینژوله توانایی اتصال ضعیف را داشتند.

نتایج حاصل از آزمون مولکولی نشان داد که از مجموع تمامی استافیلوکوکوس/اورنوس تحت مطالعه، 15 اینژوله و 41 مولد استافیلوکوکوس/ایپیرمیدیس وجود داشت. از میان این مولکول‌ها، 20 اینژوله و 17 مولد استافیلوکوکوس/ایپیرمیدیس به ترتیب مربوط به پنسیلین، اتروپماپاسین و آمیکاسین بود. روش میکروتیز لپیت بر اساس انداد‌گیری جذب نوری نشان داد که از تعداد کل 20 اینژوله CSF از نمونه استافیلوکوکوس/ایپیرمیدیس به ترتیب 4/5 (33%) و 16/5 (13%) به تعداد 117 (100%) و 12/5 (100%) از نمونه استافیلوکوکوس/اورنوس توسط هیدروکربن اکسید و هیدروکربن اکسیدی بمباران گردید.

جدول 2- فراوانی استافیلوکوکوس/اورنوس و استافیلوکوکوس/ایپیرمیدیس جداسازی شده در تحقیق نمونه‌ها

<table>
<thead>
<tr>
<th>نوع نمونه</th>
<th>استافیلوکوکوس/اورنوس</th>
<th>استافیلوکوکوس/ایپیرمیدیس</th>
</tr>
</thead>
<tbody>
<tr>
<td>خون</td>
<td>21 (1/7/4)</td>
<td>4 (1/7/10)</td>
</tr>
<tr>
<td>زخم</td>
<td>35 (1/7/4)</td>
<td>6 (1/7/8)</td>
</tr>
<tr>
<td>ادرار</td>
<td>15 (1/7/3)</td>
<td>3 (1/7/2)</td>
</tr>
<tr>
<td>چربی</td>
<td>15 (1/7/2)</td>
<td>0 (0/0/0)</td>
</tr>
<tr>
<td>خلات</td>
<td>7 (1/7/2)</td>
<td>0 (0/0/0)</td>
</tr>
<tr>
<td>CSF</td>
<td>5 (1/7/2)</td>
<td>0 (0/0/0)</td>
</tr>
<tr>
<td>آبیس</td>
<td>16 (1/7/2)</td>
<td>4 (1/7/2)</td>
</tr>
<tr>
<td>جمع کل</td>
<td>117 (100%)</td>
<td>30 (100%)</td>
</tr>
</tbody>
</table>

جدول 3- نتایج حساسیت الگوی‌های استافیلوکوکوس اورنوس و استافیلوکوکوس/ایپیرمیدیس

<table>
<thead>
<tr>
<th>روش پیشنهادی</th>
<th>استافیلوکوکوس اورنوس</th>
<th>استافیلوکوکوس/ایپیرمیدیس</th>
</tr>
</thead>
<tbody>
<tr>
<td>الگوی بیوفیلم</td>
<td>20 (4/5/20)</td>
<td>4 (1/7/20)</td>
</tr>
<tr>
<td>الگوی آنتیبیوتیک</td>
<td>12 (4/5/12)</td>
<td>4 (1/7/12)</td>
</tr>
<tr>
<td>الگوی جنتامیسین</td>
<td>13 (4/5/13)</td>
<td>3 (1/7/3)</td>
</tr>
<tr>
<td>الگوی سپیروفلافاسین</td>
<td>12 (4/5/12)</td>
<td>4 (1/7/12)</td>
</tr>
<tr>
<td>الگوی آمیکاسین</td>
<td>9 (4/5/9)</td>
<td>3 (1/7/3)</td>
</tr>
</tbody>
</table>

164
بحث

توانایی استافیلوکوکس‌ها در تشکیل بیوفیلم‌ها به‌طور مجدد شاهد شیوع بالایی استافیلوکوکس‌های مولت بیوفیلم هستند (2). در مطالعه Iorio حامله در سال 2011، از میان 47 جناحی استافیلوکوکس واتوس جوان از خون، 25 جناحی در آزمایش تشخیص فتوئی بیوفیلم، از نظر تولید بیوفیلم مثبت بود؛ اما در مقایسه با نتایج پژوهش حاضر لنگری زیادی را نشان داد که می‌تواند به‌دست نتایج دنادریان، منبع و نیز جنرالیز نمونه‌برداری (8) در مطالعه و Gad همکاران در سال 2009، نشان داده شد که از 18 حامله استافیلوکوکس واتوس جوان از سوندهای ادراری انسان، 15 جناحی (82٪) تشکیل بیوفیلم داشتند و از این تعداد 12 درصد بیوفیلم قوی، 23 درصد بیوفیلم متوسط و 6 درصد بیوفیلم تشکیل داندند. نتایج مطالعه Gad همکاران نیز مشابه نتایج پژوهش حاضر، بیانگر انتخاب بسیار بالای جدایی‌های استافیلوکوکس واتوس در تولید بیوفیلم می‌باشد (3).

در مطالعه حاضر تمامی سویه‌های مولت بیوفیلم، دارای هر دو نوع icaD و icaA بودند. این یافته برخلاف برخی گزارش‌ها از آسیا و اروپا است که در آن‌ها انتقال کامل میان تشکیل بیوفیلم به‌روش‌های سفید و کیفی و زنتایپ آنها یافت نشده است (9، 10)؛ اما در برخی از گزارش‌ها، هر دو دو زن در میان 100 درصد سویه‌های مولت بیوفیلم icaD و icaA نشان دهنده عضویت مشابه، حساسیت و توانایی استافیلوکوکس واتوس در تشکیل بیوفیلم است.
گزارش شده‌اند (۳، ۴۰). یافته‌های پژوهش حاضر مؤید اهمیت‌زن‌های icaD و icaA در تشکیل بیوفیلم در استافیلوکوکوس‌اوروزس است که منطقی بر یافته‌های Arciola و همکاران است (۳، ۴۱).

نتیجه‌گیری

استافیلوكوکوس اوروزس، ازجمله باکتری‌های است که در بخش‌های مرافقت‌های ویژه بیمارستان پذیرفته در روند توسعه بیوفیلم از اهمیت ویژه‌ای برخوردار است. با توجه به افزایش مقاومت‌های‌بیوتیکی در این باکتری و نیز توافق‌یابی بالای آن در تشکیل بیوفیلم، این باکتری می‌تواند در پیاده‌سازی عفونت‌های مزمن و همچنین ایجاد سوء‌ویژگی‌ای بیوتیکی

منابع: